Show simple item record

The evolution of orbit orientation and encephalization in the Carnivora (Mammalia)

dc.contributor.authorFinarelli, John A.en_US
dc.contributor.authorGoswami, Anjalien_US
dc.date.accessioned2010-06-01T22:27:54Z
dc.date.available2010-06-01T22:27:54Z
dc.date.issued2009-05en_US
dc.identifier.citationFinarelli, John A.; Goswami, Anjali (2009). "The evolution of orbit orientation and encephalization in the Carnivora (Mammalia)." Journal of Anatomy 214(5): 671-678. <http://hdl.handle.net/2027.42/75454>en_US
dc.identifier.issn0021-8782en_US
dc.identifier.issn1469-7580en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75454
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19438762&dopt=citationen_US
dc.description.abstractEvolutionary change in encephalization within and across mammalian clades is well-studied, yet relatively few comparative analyses attempt to quantify the impact of evolutionary change in relative brain size on cranial morphology. Because of the proximity of the braincase to the orbits, and the inter-relationships among ecology, sensory systems and neuroanatomy, a relationship has been hypothesized between orbit orientation and encephalization for mammals. Here, we tested this hypothesis in 68 fossil and living species of the mammalian order Carnivora, comparing orbit orientation angles (convergence and frontation) to skull length and encephalization. No significant correlations were observed between skull length and orbit orientation when all taxa were analysed. Significant correlations were observed between encephalization and orbit orientation; however, these were restricted to the families Felidae and Canidae. Encephalization is positively correlated with frontation in both families and negatively correlated with convergence in canids. These results indicate that no universal relationship exists between encephalization and orbit orientation for Carnivora. Braincase expansion impacts orbit orientation in specific carnivoran clades, the nature of which is idiosyncratic to the clade itself.en_US
dc.format.extent6393138 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2009 Anatomical Society of Great Britain and Irelanden_US
dc.subject.otherCarnivoraen_US
dc.subject.otherConvergence Angleen_US
dc.subject.otherEncephalizationen_US
dc.subject.otherFrontation Angleen_US
dc.subject.otherMammaliaen_US
dc.titleThe evolution of orbit orientation and encephalization in the Carnivora (Mammalia)en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Geological Sciences, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumUniversity of Michigan, Museum of Paleontology, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Earth Sciences, University of Cambridge, Cambridge, UKen_US
dc.identifier.pmid19438762en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75454/1/j.1469-7580.2009.01061.x.pdf
dc.identifier.doi10.1111/j.1469-7580.2009.01061.xen_US
dc.identifier.sourceJournal of Anatomyen_US
dc.identifier.citedreferenceCartmill M ( 1970 ) The Orbits of Arboreal Mammals: a Reassessment of the Arboreal Theory of Primate Evolution. Chicago, IL: University of Chicago.en_US
dc.identifier.citedreferenceCartmill M ( 1972 ) Arboreal adaptations and the origin of the Order Primates. In The Functional and Evolutionary Biology of Primates (ed. Tuttle R ), pp. 97 – 122. Chicago: Aldine.en_US
dc.identifier.citedreferenceCartmill M ( 1974 ) Rethinking primate origins. Science 184, 436 – 443.en_US
dc.identifier.citedreferenceCox PG ( 2008 ) A quantitative analysis of the Eutherian orbit: correlations with masticatory apparatus. Biol Rev 83, 35 – 69.en_US
dc.identifier.citedreferenceFelsenstein J ( 1985 ) Phylogenies and the comparative method. Am Nat 125, 1 – 15.en_US
dc.identifier.citedreferenceFinarelli JA ( 2008a ) Hierarchy and the reconstruction of evolutionary trends: evidence for constraints on the evolution of body size in terrestrial caniform carnivorans (Mammalia). Paleobiology 34, 553 – 562.en_US
dc.identifier.citedreferenceFinarelli JA ( 2008b ) Testing hypotheses of the evolution of brain-body size scaling in the Canidae (Carnivora, Mammalia). Paleobiology 34, 35 – 45.en_US
dc.identifier.citedreferenceFinarelli JA, Flynn JJ ( 2006 ) Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): the effects of incorporating data from the fossil record. Syst Biol 55, 301 – 313.en_US
dc.identifier.citedreferenceFinarelli JA, Flynn JJ ( 2007 ) The evolution of encephalization in caniform carnivorans. Evolution 61, 1758 – 1772.en_US
dc.identifier.citedreferenceFlynn JJ, Finarelli JA, Spaulding M ( in press ) Phylogeny of the Carnivora and Carnivoramorpha, and the use of the fossil record to enhance understanding of evolutionary transformations. In Carnivora: Phylogeny, Form and Function (eds Goswami A, Friscia AR ). Cambridge, UK: Cambridge University Press.en_US
dc.identifier.citedreferenceFlynn JJ, Finarelli JA, Zehr S, Hsu J, Nedbal MA ( 2005 ) Molecular phylogeny of the Carnivora (Mammalia): assessing the impact of increased sampling on resolving enigmatic relationships. Syst Biol 54, 317 – 337.en_US
dc.identifier.citedreferenceGarland T, Harvey PH, Ives AR ( 1992 ) Procedures for the analysis of comparative data using phyogenetically independent contrasts. Syst Biol 41, 18 – 32.en_US
dc.identifier.citedreferenceGarland T, Ives AR ( 2000 ) Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am Nat 155, 346 – 364.en_US
dc.identifier.citedreferenceGarland T, Martin KLM, Diaz-Uriarte R ( 1997 ) Reconstructing ancestral trait values using squared-change parsimony: plasma osmolarity at the origin of amniotes. In Amniote Origins: Completing the Transition to Land (eds Sumida SS, Martin KLM ), pp. 425 – 501. San Diego: Academic Press.en_US
dc.identifier.citedreferenceGarland T, Midford PE, Ives AR ( 1999 ) An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral values. Am Zool 39, 374 – 388.en_US
dc.identifier.citedreferenceGoswami A ( 2006a ) Cranial modularity shifts during mammalian evolution. Am Nat 168, 270 – 280.en_US
dc.identifier.citedreferenceGoswami A ( 2006b ) Morphological integration in the carnivoran skull. Evolution 60, 169 – 183.en_US
dc.identifier.citedreferenceHeesy CP ( 2005 ) Function of the mammalian postorbital bar. J Morphol 264, 363 – 380.en_US
dc.identifier.citedreferenceJerison H ( 1970 ) Brain evolution: new light on old principles. Science 170, 1224 – 1225.en_US
dc.identifier.citedreferenceJerison H ( 1973 ) Evolution of the Brain and Intelligence, Academic Press, New York.en_US
dc.identifier.citedreferenceMaddison WP, Maddison DR ( 2007 ) Mesquite: a modular system for evolutionary analysis.en_US
dc.identifier.citedreferenceMarino L, McShea DW, Uhen MD ( 2004 ) Origin and evolution of large brains in toothed whales. Anat Rec A Discov Mol Cell Evol Biol 281A, 1247 – 1255.en_US
dc.identifier.citedreferenceMidford P, Garland T, Maddison WP ( 2003 ) PDAP package (of Mesquite).en_US
dc.identifier.citedreferenceNoble VE, Kowalski EM, Ravosa MJ ( 2000 ) Orbit orientation and the function of the mammalian postorbital bar. J Zool 250, 405 – 418.en_US
dc.identifier.citedreferenceOakley TH, Cunningham CW ( 2000 ) Independent contrasts succeed where ancestor reconstruction fails in a known bacteriophage phylogeny. Evolution 54, 397 – 405.en_US
dc.identifier.citedreferenceRadinsky L ( 1977 ) Brains of early carnivores. Paleobiology 3, 333 – 349.en_US
dc.identifier.citedreferenceRoss CF ( 1995 ) Allometric and functional influences on primate orbit orientation and the origins of the Anthropoidea. J Hum Evol 29, 201 – 227.en_US
dc.identifier.citedreferenceSears KE, Goswami A, Flynn JJ, Niswander L ( 2007 ) The correlated evolution of Runx2 tandem repeats and facial length in Carnivora. Evol Devel 9, 555 – 565.en_US
dc.identifier.citedreferenceVan Valkenburgh B ( 1990 ) Skeletal and dental predictors of body mass in carnivores. In Body Size in Mammalian Paleobiology: Estimation and Biological Implications (eds Damuth J, MacFadden BJ ), pp. 181 – 206. New York: Cambridge University Press.en_US
dc.identifier.citedreferenceWebster AJ, Purvis A ( 2002 ) Testing the accuracy of methods for reconstructing ancestral states of continuous characters. Proc R Soc Lond B Biol Sci 269, 143 – 149.en_US
dc.identifier.citedreferenceWesley-Hunt GD ( 2005 ) The morphological diversification of carnivores in North America. Paleobiology 31, 35 – 55.en_US
dc.identifier.citedreferenceWesley-Hunt GD, Flynn JJ ( 2005 ) Phylogeny of the Carnivora: basal relationships among the carnivoramorphans, and assessment of the position of ‘Miacoidea’ relative to crown-clade Carnivora. J Syst Palaeontol 3, 1 – 28.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.