Show simple item record

Biodegradation of phenoxyacetic acid in soil by Pseudomonas putida PP0301(pR0103), a constitutive degrader of 2, 4–dichlorophenoxyacetate

dc.contributor.authorShort, K. A.en_US
dc.contributor.authorKing, R. J.en_US
dc.contributor.authorSeidler, R. J.en_US
dc.contributor.authorOlsen, R. H.en_US
dc.date.accessioned2010-06-01T22:28:59Z
dc.date.available2010-06-01T22:28:59Z
dc.date.issued1992-08en_US
dc.identifier.citationSHORT, K. A.; KING, R. J.; SEIDLER, R. J.; OLSEN, R. H. (1992). "Biodegradation of phenoxyacetic acid in soil by Pseudomonas putida PP0301(pR0103), a constitutive degrader of 2, 4–dichlorophenoxyacetate." Molecular Ecology 1(2): 89-94. <http://hdl.handle.net/2027.42/75471>en_US
dc.identifier.issn0962-1083en_US
dc.identifier.issn1365-294Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75471
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=1344988&dopt=citationen_US
dc.description.abstractThe efficacy of using genetically engineered microbes (GEMs) to degrade recalcitrant environmental toxicants was demonstrated by the application of Pseudomonas putida PP0301(pR0103) to an Oregon agricultural soil amended with 500 u.g/g of a model xenobiotic, phenoxyacetic acid (PAA). P. putida PP0301(pR0103) is a constitutive degrader of 2, 4–dichlorophenoxyacetate (2, 4–D) and is also active on the non–inducing substrate, PAA. PAA is the parental compound of 2, 4–dichlorophenoxyacetic acid (2, 4–D) and whilst the indigenous soil microbiota degraded 500 ng/g 2, 4–D to less than 10 J–g/g, PAA degradation was insignificant during a 40–day period. No significant degradation of PAA occurred in soil inoculated with the parental strain P. putida PP0301 or the inducible 2, 4–D degrader P. putida PP0301(pR0101). Moreover, co–amendment of soil with 2, 4–D and PAA induced the microbiota to degrade 2, 4–D; PAA was not degraded. P. putida PP0301–(pR0103) mineralized 500–Μg/g PAA to trace levels within 13 days and relieved phytotoxicity of PAA to Raphanus sativus (radish) seeds with 100% germination in the presence of the GEM and 7% germination in its absence. In unamended soil, survival of the plasmid–free parental strain P. putida PP0301 was similar to the survival of the GEM strain P. putida PP0301(pR0103). However, in PAA amended soil, survival of the parent strain was over 10 000–fold lower (< 3 colony forming units per gram of soil) than survival of the GEM strain after 39 days.en_US
dc.format.extent480595 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1992 Blackwell Publishing Ltden_US
dc.subject.otherBiodegradationen_US
dc.subject.otherSoilen_US
dc.subject.otherPAAen_US
dc.subject.other2en_US
dc.subject.other4–Den_US
dc.subject.otherGEMen_US
dc.subject.otherPseudomonaden_US
dc.titleBiodegradation of phenoxyacetic acid in soil by Pseudomonas putida PP0301(pR0103), a constitutive degrader of 2, 4–dichlorophenoxyacetateen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum†Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationother*USEPA Environmental Research Laboratory, 200 SW35th Street, Corvallis, USAen_US
dc.contributor.affiliationother†NSI Technology Services Corp., Environmental Sciences, USEPA Environmental Research Laboratory, Corvallis, OR 97333, USAen_US
dc.identifier.pmid1344988en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75471/1/j.1365-294X.1992.tb00160.x.pdf
dc.identifier.doi10.1111/j.1365-294X.1992.tb00160.xen_US
dc.identifier.sourceMolecular Ecologyen_US
dc.identifier.citedreferenceAltenucher J., Schmid K., Schmitt R. ( 1983 ) Tnl721–encoded tetracyline resistance: mapping of structural and regulatory genes mediating resistance. Journal of Bacteriology, 153, 116 – 123.en_US
dc.identifier.citedreferenceAltom JD, Stritzke JF ( 1973 ) Degradation of dicamba, picloram, and four phenoxy herbicides in soils. Weed Science, 21, 556 – 560.en_US
dc.identifier.citedreferenceAudus LJ ( 1960 ) Microbiological breakdown of herbicides in soils. In: Woodford EK Sagar GR ( eds ) Herbicides and the Soil, pp. 1 – 19. Blackwell Scientific Publications, Oxford.en_US
dc.identifier.citedreferenceCole DJ, Loughman BC ( 1982 ) Metabolism of phenoxyacetic acid in potato {Solarium tuberosum L.) tuber slices. Plant Science Letters, 27, 289 – 298.en_US
dc.identifier.citedreferenceDon RH, Pemberton JM ( 1981 ) Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus., Journal of Bacteriology, 145, 681 – 686.en_US
dc.identifier.citedreferenceDon RH, Weightman AJ, Knackmuss H–J, Timmis KN ( 1985 ) Transposon mutagenesis and cloning analysis of the pathways for degradation of 2, 4–dichlorophenoxy acetic acid and 3–chIorobenzoate in Alcaligenes eutrophus JMP134(pJP4). Journal of Bacteriology, 161, 85 – 90.en_US
dc.identifier.citedreferenceDoyle JD Short KA, Stotzky G., King RJ, Olsen RH ( 1991 ) Ecologically significant effects of Pseudomonas putida PP0301 (pR0103), genetically engineered to degrade 2, 4–dichlorophenoxyacetate, on microbial populations and processes in soil. Canadian Journal of Microbiology, 37, 682 – 691.en_US
dc.identifier.citedreferenceHarker AR, Olsen RH, Seidler RJ ( 1989 ) Phenoxyacetic acid degradation by the 2, 4–dichlorophenoxyacetic acid (TFD) pathway of plasmid pJP4: mapping and characterization of the TFD regulatory gene. tfdA, Journal of Bacteriology 171, 314 – 320.en_US
dc.identifier.citedreferenceJensen DJ ( 1978 ) Pesticide residue analysis. In: Moye HA ( ed. ) Monograph Series On Analytical Chemistry and its Application, No. 43, pp. 196 – 220. Interscience, New York.en_US
dc.identifier.citedreferenceKaphammer B., Kukor JK, Olsen RH ( 1990 ) Regulation of tfd CDEF by tfd R of the 2, 4–dichlorophenoxyacetic acid degradation plasmid pJP4. Journal of Bacteriology, 172, 2280 – 2286.en_US
dc.identifier.citedreferenceKing RJ, Short KA, Seidler RJ ( 1991 ) Assay for detection and enumeration of genetically engineered microorganisms which is based on the activity of a deregulated 2, 4–dichlorophenoxyacetate monooxygenase. Applied and Environmental Microbiology, 57, 1790 – 1792.en_US
dc.identifier.citedreferenceLoos MA ( 1975 ) Phenoxyalkanoic acids. In: Kearney PC Kaufman DD ( eds ) Herbicides Chemistry, Degradation, and Mode of Action. Vol. 1. Marcel Dekker, New York.en_US
dc.identifier.citedreferenceNewman AS ( 1947 ) The effect of certain plant growth–regulators on soil microorganisms and microbial processes. Soc, Science Society of America Proceedings, 12, 217 – 221.en_US
dc.identifier.citedreferenceOlsen RH, Shipley P. ( 1973 ) Host range and properties of the Psuedomonas aeruginosa R factor R1822. Journal of Bacteriology, 113, 772 – 780.en_US
dc.identifier.citedreferenceOrchard VA, Cook FJ ( 1983 ) Relationship between soil respiration and soil moisture. Soil Biology and Biochemistry, 15, 447 – 453.en_US
dc.identifier.citedreferenceOu LT, Rothwell DF, Wheeler WB, Davidson JM ( 1978 ) The effect of high 2, 4–D concentrations on degradation and carbon dioxide evolution in soils. Journal of Environmental Quality 7, 241 – 246.en_US
dc.identifier.citedreferencePemberton JM Corney B. Don RH ( 1979 ) Evolution and spread of pesticide degrading ability among soil microorganisms. In: Timmis KN Puhler A. ( eds ) Plasmids of Medical, Environmental and Commercial Importance. Elsevier, Amsterdam.en_US
dc.identifier.citedreferencePurkayastha R. ( 1974 ) Simultaneous determination of 2, 4–dichlorophenoxyacetic acid, 2, 4, 5–trichlorophenoxyacetic acid, and 2–methoxy–3, 6–dichlorobenzoic acid in soil and water by gas chromatography with electron capture detector. Journal of Agricultural and Food Chemistry, 22, 453 – 158.en_US
dc.identifier.citedreferenceSattar MA, Paasivirta J. ( 1980 ) Fate of chlorophenoxyacetic acids in acid soil. Chemosphere, 9, 745 – 752.en_US
dc.identifier.citedreferenceShort KA, Seidler RJ, Olsen RH ( 1990 ) Survival and degradative capacity of Pseudomonas putida induced or constitutively expressing plasmid–mediated degradation of 2, 4–dichlorophenoxyacetate (TFD) in soil. Canadian journal of Microbiology, 36, 821 – 826.en_US
dc.identifier.citedreferenceShort KA, Doyle JD, King RJ, Seidler RJ, Olsen RH ( 1991 ) Effects of 2, 4–dichIorophenol, a metabolite of a genetically engineered bacterium, and 2, 4–dichlorophenoxyacetate on some microorganism–mediated ecological processes in soil. Applied and Environmental Microbiology, 57, 412 – 418.en_US
dc.identifier.citedreferenceSmith AE Jr, Shuman LM, Lokey N. ( 1984 ) High–pressure liquid chromatographic analysis of tebuthiuron in soil. Journal of Agricultural and Food Chemistry, 32, 416 – 418.en_US
dc.identifier.citedreferenceStanier RY, Palleroni NJ, Doudoroff M. ( 1966 ) The aerobic pseudomonads: a taxonomic study. Journal of General Microbiology, 43, 159 – 271.en_US
dc.identifier.citedreferenceSteel RGD, Torrie JH ( 1980 ) Principles and Procedures of Statistics: a Biometrical Approach. McGraw–Hill, New York.en_US
dc.identifier.citedreferenceStott DE, Martin JP, Focht DD, Haider K. ( 1983 ) Stabilization in humus, and incorporation into soil biomass of 2, 4–D and chlorocatechol carbons., Soc Science Society of America Journal, 47, 66 – 70.en_US
dc.identifier.citedreferenceStreber WR, Timmis KN, Zenk MH ( 1987 ) Analysis, cloning, and high–level expression of 2, 4–dichlorophenoxyacetate monoxygenase gene tfdA of Alcaligenes eulrophus JMP134. Journal of Bacteriology, 169, 2950 – 2955.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.