Show simple item record

Endocytosis of plasma-derived factor V by megakaryocytes occurs via a clathrin-dependent, specific membrane binding event

dc.contributor.authorBouchard, B. A.en_US
dc.contributor.authorWilliams, J. L.en_US
dc.contributor.authorMeisler, N. T.en_US
dc.contributor.authorLong, Michael W.en_US
dc.contributor.authorTracy, P. B.en_US
dc.date.accessioned2010-06-01T22:29:06Z
dc.date.available2010-06-01T22:29:06Z
dc.date.issued2005-03en_US
dc.identifier.citationBOUCHARD, B. A.; WILLIAMS, J. L.; MEISLER, N. T.; LONG, M. W.; TRACY, P. B. (2005). "Endocytosis of plasma-derived factor V by megakaryocytes occurs via a clathrin-dependent, specific membrane binding event." Journal of Thrombosis and Haemostasis 3(3): 541-551. <http://hdl.handle.net/2027.42/75473>en_US
dc.identifier.issn1538-7933en_US
dc.identifier.issn1538-7836en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75473
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15748245&dopt=citationen_US
dc.description.abstractMegakaryocytes were analyzed for their ability to endocytose factor V to define the cellular mechanisms regulating this process. In contrast to fibrinogen, factor V was endocytosed by megakaryocytes derived from CD34 + cells or megakaryocyte-like cell lines, but not by platelets. CD41 + ex vivo -derived megakaryocytes endocytosed factor V, as did subpopulations of the megakaryocyte-like cells MEG-01, and CMK. Similar observations were made for fibrinogen. Phorbol diester-induced megakaryocytic differentiation of the cell lines resulted in a substantial increase in endocytosis of both proteins as compared to untreated cells that did not merely reflect their disparate plasma concentrations. Factor IX, which does not associate with platelets or megakaryocytes, was not endocytosed by any of the cells examined. Endocytosis of factor V by megakaryocytes proceeds through a specific and independent mechanism as CHRF-288 cells endocytosed fibrinogen but not factor V, and the presence of other plasma proteins had no effect on the endocytosis of factor V by MEG-01 cells. Furthermore, as the endocytosis of factor V was also demonstrated to occur through a clathrin-dependent mechanism, these combined data demonstrate that endocytosis of factor V by megakaryocytes occurs via a specific, independent, and most probably receptor-mediated, event.en_US
dc.format.extent626052 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Incen_US
dc.rights2005 International Society on Thrombosis and Haemostasisen_US
dc.subject.otherClathrinen_US
dc.subject.otherEndocytosisen_US
dc.subject.otherFactor Ven_US
dc.subject.otherMegakaryocyteen_US
dc.subject.otherPlateleten_US
dc.subject.otherReceptoren_US
dc.titleEndocytosis of plasma-derived factor V by megakaryocytes occurs via a clathrin-dependent, specific membrane binding eventen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum† Department of Pediatrics, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationother* Biochemistryen_US
dc.contributor.affiliationother† Medicine, University of Vermont College of Medicine, Burlington, VT, USAen_US
dc.identifier.pmid15748245en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75473/1/j.1538-7836.2005.01190.x.pdf
dc.identifier.doi10.1111/j.1538-7836.2005.01190.xen_US
dc.identifier.sourceJournal of Thrombosis and Haemostasisen_US
dc.identifier.citedreferenceSporn LA, Chavin SI, Marder VJ, Wagner DD. Biosynthesis of von Willebrand protein by human megakaryocytes. J Clin Invest 1985; 76: 1102 – 6.en_US
dc.identifier.citedreferenceSitar G, Borroni R, Pesce G. Synthesis of thrombospondin and glycoprotein IIb-IIIa by a purified megakaryocyte human bone marrow culture. Haematologica 1986; 71: 389 – 93.en_US
dc.identifier.citedreferenceKonkle BA, Schick PK, He X, Liu RJ, Mazur EM. Plasminogen activator inhibitor-1 mRNA is expressed in platelets and megakaryocytes and the megakaryoblastic cell line CHRF-288. Arterioscler Thromb 1993; 13: 669 – 74.en_US
dc.identifier.citedreferenceHill SSSG, Joshua P, Ribau J, Austin RC, Podor TJ. Differential mechanisms targeting type I plasminogen activator inhibitor and vitronectin into the storage granules of a human megakaryocytic cell line. Blood 1996; 87: 5061 – 73.en_US
dc.identifier.citedreferenceRoussi JDL, Sigman J, Vaiman M, Pignaud G, Bonneau M, Martin Cramer E. Absence of incorporation of plasma von Willebrand factor into porcine platelet α-granules. Br J Haematol 1995; 90: 661 – 8.en_US
dc.identifier.citedreferenceCramer EM, Debili N, Martin JF, Gladwin AM, Breton-Gorius J, Harrison P, Savidge GF, Vainchenker W. Uncoordinated expression of fibrinogen compared with thrombospondin and von Willebrand factor in maturing human megakaryocytes. Blood 1989; 73: 1123 – 9.en_US
dc.identifier.citedreferenceHandagama P, Scarborough RM, Shuman MA, Bainton DF. Endocytosis of fibrinogen into megakaryocyte and platelet alpha-granules is mediated by alpha IIb beta 3 (glycoprotein IIb-IIIa) [published erratum appears in Blood 1993; 82 (9): 2936]. Blood 1993; 82: 135 – 8.en_US
dc.identifier.citedreferenceLouache F, Debili N, Cramer E, Breton-Gorius J, Vainchenker W. Fibrinogen is not synthesized by human megakaryocytes. Blood 1991; 77: 311 – 16.en_US
dc.identifier.citedreferencePodolak-Dawidziak M, Hancock V, Lelchuk R, Kotlarek-Haus S, Martin JF. The expression of mRNA for fibrinogen in megakaryocytes isolated from patients with T-cell lymphoma. Br J Haematol 1995; 91: 362 – 6.en_US
dc.identifier.citedreferencePoujol C, Nurden AT, Nurden P. Ultrastructural analysis of the distribution of the vitronectin receptor (alpha v beta 3) in human platelets and megakaryocytes reveals an intracellular pool and labelling of the alpha-granule membrane. Br J Haematol 1997; 96: 823 – 35.en_US
dc.identifier.citedreferenceCamire RM, Pollak ES, Kaushansky K, Tracy PB. Secretable human platelet-derived factor V originates from the plasma pool. Blood 1998; 92: 3035 – 41.en_US
dc.identifier.citedreferenceChristella M, Thomassen LG, Castoldi E, Tans G, Magdeleyns EJ, Delaunoit C, Debusscher L, Van Assche KJ, Rosing J. Endogenous factor V synthesis in megakaryocytes contributes negligibly to the platelet factor V pool. Haematologica 2003; 88: 1150 – 6.en_US
dc.identifier.citedreferenceGould WR, Simioni P, Silveira JR, Tormene D, Kalafatis M, Tracy PB. Megakaryocytes endocytose and subsequently modify human factor V in vivo to form the entire pool of a unique platelet-derived cofactor. J Thromb Haemost 2005; 3: 450 – 6.en_US
dc.identifier.citedreferenceTracy PB, Eide LL, Mann KG. Human prothrombinase complex assembly and function on isolated peripheral blood cell populations. J Biol Chem 1985; 260: 2119 – 24.en_US
dc.identifier.citedreferenceMazzorana M, Baffet G, Kneip B, Launois B, Guguen-Guillouzo C. Expression of coagulation factor V gene by normal adult human hepatocytes in primary culture. Br J Haematol 1991; 78: 229 – 35.en_US
dc.identifier.citedreferenceGould WR, Silveira JR, Tracy PB. Unique in vivo modifications of coagulation factor V produce a physically and functionally distinct platelet-derived cofactor: characterization of purified platelet-derived factor V/Va. J Biol Chem 2004; 279: 2383 – 93.en_US
dc.identifier.citedreferenceMonkovic DD, Tracy PB. Functional characterization of human platelet-released factor V and its activation by factor Xa and thrombin. J Biol Chem 1990; 265: 17132 – 40.en_US
dc.identifier.citedreferenceMonkovic DD, Tracy PB. Activation of human factor V by factor Xa and thrombin. Biochemistry 1990; 29: 1118 – 28.en_US
dc.identifier.citedreferenceKalafatis M, Rand MD, Mann KG. The mechanism of inactivation of human factor V and human factor Va by activated protein C. J Biol Chem 1994; 269: 31869 – 80.en_US
dc.identifier.citedreferenceCamire RM, Kalafatis M, Cushman M, Tracy RP, Mann KG, Tracy PB. The mechanism of inactivation of human platelet factor Va from normal and activated protein C-resistant individuals. J Biol Chem 1995; 270: 20794 – 800.en_US
dc.identifier.citedreferenceConlon SJ, Camire RM, Kalafatis M, Tracy PB. Cleavage of platelet-derived factor Va by plasmin results in increased and sustained cofactor activity on the thrombin-activated platelet surface. Thromb Haemost 1997; 77: 2507a.en_US
dc.identifier.citedreferenceCamire RM, Kalafatis M, Simioni P, Girolami A, Tracy PB. Platelet-derived factor Va/Va Leiden cofactor activities are sustained on the surface of activated platelets despite the presence of activated protein C. Blood 1998; 91: 2818 – 29.en_US
dc.identifier.citedreferenceTracy PB, Mann KG. Abnormal formation of the prothrombinase complex: factor V deficiency and related disorders. Hum Pathol 1987; 18: 162 – 9.en_US
dc.identifier.citedreferenceNesheim ME, Nichols WL, Cole TL, Houston JG, Schenk RB, Mann KG, Bowie EJ. Isolation and study of an acquired inhibitor of human coagulation factor V. J Clin Invest 1986; 77: 405 – 15.en_US
dc.identifier.citedreferenceYang TL, Pipe SW, Yang A, Ginsburg D. Biosynthetic origin and functional significance of murine platelet factor V. Blood 2003; 102: 2851 – 5.en_US
dc.identifier.citedreferenceSun H, Yang TL, Yang A, Wang X, Ginsburg D. The murine platelet and plasma factor V pools are biosynthetically distinct and sufficient for minimal hemostasis. Blood 2003; 102: 2856 – 61.en_US
dc.identifier.citedreferenceChiu HC, Schick PK, Colman RW. Biosynthesis of factor V in isolated guinea pig megakaryocytes. J Clin Invest 1985; 75: 339 – 46.en_US
dc.identifier.citedreferenceTracy PB, Peterson JM, Nesheim ME, McDuffie FC, Mann KG. Interaction of coagulation factor V and factor Va with platelets. J Biol Chem 1979; 254: 10354 – 61.en_US
dc.identifier.citedreferenceCerveny TJ, Fass DN, Mann KG. Synthesis of coagulation factor V by cultured aortic endothelium. Blood 1984; 63: 1467 – 74.en_US
dc.identifier.citedreferenceJenny RJ, Pittman DD, Toole JJ, Kriz RW, Aldape RA, Hewick RM, Kaufman RJ, Mann KG. Complete cDNA and derived amino acid sequence of human factor V. Proc Natl Acad Sci USA 1987; 84: 4846 – 50.en_US
dc.identifier.citedreferenceIshihara H, Connolly AJ, Zeng D, Kahn ML, Zheng YW, Timmons C, Tram T, Coughlin SR. Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 1997; 386: 502 – 6.en_US
dc.identifier.citedreferenceKatzmann JA, Nesheim ME, Hibbard LS, Mann KG. Isolation of functional human coagulation factor V by using a hybridoma antibody. Proc Natl Acad Sci USA 1981; 78: 162 – 6.en_US
dc.identifier.citedreferenceStraughn W 3rd, Wagner RH. A simple method for preparing fibrinogen. Thromb Diath Haemorrh 1966; 16: 198 – 206.en_US
dc.identifier.citedreferenceWilliams JL, Pipia GG, Datta NS, Long MW. Thrombopoietin requires additional megakaryocyte-active cytokines for optimal ex vivo expansion of megakaryocyte precursor cells. Blood 1998; 91: 4118 – 26.en_US
dc.identifier.citedreferenceTaniguchi Y, London R, Schinkmann K, Jiang S, Avraham H. The receptor protein tyrosine phosphatase, PTP-RO, is upregulated during megakaryocyte differentiation and is associated with the c-Kit receptor. Blood 1999; 94: 539 – 49.en_US
dc.identifier.citedreferenceFugman DA, Witte DP, Jones CL, Aronow BJ, Lieberman MA. In vitro establishment and characterization of a human megakaryoblastic cell line. Blood 1990; 75: 1252.en_US
dc.identifier.citedreferenceChuang JL, Schleef RR. Adenovirus-mediated expression and packaging of tissue-type plasminogen activator in megakaryocytic cells. Thromb Haemost 2001; 85: 1079 – 85.en_US
dc.identifier.citedreferenceNagano T, Kishimoto Y, Kimura T, Yasunaga K, Adachi M, Ryo R, Sato T et al. Ultrastructural analysis of a human megakaryocytic leukemia cell line (CMK11-5) in response to platelet agonists. Int J Hematol 1993; 57: 73 – 80.en_US
dc.identifier.citedreferenceBouchard BA, Thanassi NM, Tracy PB. Factor V endocytosed and retained by megakaryocytes is proteolytically processed by an intracellular protease to form the platelet-derived factor V pool. J Thrombosis Hemostasis 2003; 1: P1335.en_US
dc.identifier.citedreferenceNagano T, Taniguchi H, Hamamoto K. Ultrastructural analysis of incorporation into organelles of CMK cells. J Clin Electron Microscopy 1989; 22: 5 – 6.en_US
dc.identifier.citedreferenceOgura M, Morishima Y, Okumura M, Hotta T, Takamoto S, Ohno R, Hirabayashi N, Nagura H, Saito N. Functional and morphological differentiation induction of a human megakaryoblastic leukemia cell line (MEG-01s) by phorbol diesters. Blood 1988; 72: 49 – 60.en_US
dc.identifier.citedreferenceHarrison P, Cramer EM. Platelet α-granules. Blood Rev, 1993: 52 – 62.en_US
dc.identifier.citedreferenceBayer N, Schober D, Huttinger M, Blaas D, Fuchs R. Inhibition of clathrin-dependent endocytosis has multiple effects on HRV2 cell entry. J Biol Chem 2000; 276: 3952 – 62.en_US
dc.identifier.citedreferenceHeuser JE, Anderson RG. Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J Cell Biol 1989; 108: 389 – 400.en_US
dc.identifier.citedreferenceKlinger MH, Kluter H. Immunocytochemical colocalization of adhesive proteins with clathrin in human blood platelets. Further evidence for coated vesicle-mediated transport of von Willebrand factor, fibrinogen and fibronectin. Cell Tissue Res 1995; 279: 453 – 7.en_US
dc.identifier.citedreferenceBarlic J, Khandaker MH, Mahon E, Andrews J, DeVries ME, Mitchell GB, Rahimpour R, Tan CM, Ferguson SS, Kelvin DJ. β-arrestins regulate interleukin-8-induced CXCR1 internalization. J Biol Chem 1999; 274: 16287 – 94.en_US
dc.identifier.citedreferenceCao H, Orth JD, Chen J, Weller SG, Heuser JE, McNiven MA. Cortactin is a component of clathrin-coated pits and participates in receptor-mediated endocytosis. Mol Cell Biol 2003; 23: 2162 – 70.en_US
dc.identifier.citedreferenceTeo M, Tan L, Lim L, Manser E. The tyrosine kinase ACK1 associates with clathrin-coated vesicles through a binding motif shared by arrestin and other adaptors. J Biol Chem 2001; 276: 18392 – 8.en_US
dc.identifier.citedreferenceWei ML, Bonzelius F, Scully RM, Kelly RB, Herman GA. GLUT4 and transferrin receptor are differentially sorted along the endocytic pathway in CHO cells. J Cell Biol 1998; 140: 565 – 75.en_US
dc.identifier.citedreferenceMemmo LM, McKeown-Longo P. The alphavbeta5 integrin functions as an endocytic receptor for vitronectin. J Cell Sci 1998; 111: 425 – 33.en_US
dc.identifier.citedreferenceGiampaolo A, Vulcano F, Macioce G, Mattia G, Barca A, Milazzo L, Orlando M, Hassan HJ. Factor V expression in human in vitro developed megakaryocytes. Thromb Haemost 2001; 86: 542a.en_US
dc.identifier.citedreferenceVeljkovic D, Cramer EM, Alimardani G, Fichelson S, Masse JM, Hayward CPM. Studies of alpha-granule proteins in cultured human megakaryocytes. Thromb Haemost 2003; 90: 844 – 52.en_US
dc.identifier.citedreferenceGewirtz AM, Keefer M, Doshi K, Annamalai AE, Chiu HC, Colman RW. Biology of human megakaryocyte factor V. Blood 1986; 67: 1639 – 48.en_US
dc.identifier.citedreferenceGewirtz AM, Shapiro C, Shen YM, Boyd R, Colman RW. Cellular and molecular regulation of factor V expression in human megakaryocytes. J Cell Phys 1992; 153: 277 – 87.en_US
dc.identifier.citedreferenceHeijnen HFG, Debili N, Vainchencker W, Breton-Gorius J, Geuze HJ, Sixma JJ. Multivesicular bodies are an intermediate stage in the formation of platelet α-granules. Blood 1998; 91: 2313 – 25.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.