Show simple item record

Molecular Abnormalities of the Glutamate Synapse in the Thalamus in Schizophrenia

dc.contributor.authorBeneyto, Monicaen_US
dc.contributor.authorMcCullumsmith, Robert E.en_US
dc.contributor.authorMeador-Woodruff, James H.en_US
dc.contributor.authorClinton, Sarah M.en_US
dc.date.accessioned2010-06-01T22:29:52Z
dc.date.available2010-06-01T22:29:52Z
dc.date.issued2003-11en_US
dc.identifier.citationMEADOR-WOODRUFF, JAMES H.; CLINTON, SARAH M.; BENEYTO, MONICA; McCULLUMSMITH, ROBERT E. (2003). "Molecular Abnormalities of the Glutamate Synapse in the Thalamus in Schizophrenia." Annals of the New York Academy of Sciences 1003(1 GLUTAMATE AND DISORDERS OF COGNITION AND MOTIVATION ): 75-93. <http://hdl.handle.net/2027.42/75484>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75484
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=14684436&dopt=citationen_US
dc.description.abstractSchizophrenia has been associated with dysfunction of glutamatergic neurotransmission. Synaptic glutamate activates pre- and postsynaptic ionotropic NMDA, AMPA, and kainate and metabotropic receptors, is removed from the synapse via five cell surface-expressed transporters, and is packaged for release by three vesicular transporters. In addition, there is a family of intracellular molecules enriched in the postsynaptic density (PSD) that target glutamate receptors to the synaptic membrane, modulate receptor activity, and coordinate glutamate receptor-related signal transduction. Each family of PSD proteins is selective for a given glutamate receptor subtype, the most well characterized being the NMDA receptor binding proteins PSD93, PSD95, NF-L, and SAP102. Besides binding glutamate receptors, many of these proteins also interact with cell surface proteins like cell adhesion molecules, ion channels, cytoskeletal elements, and signal transduction molecules. Given the complexity of the glutamate neurotransmitter system, there are many locations where disruption of normal signaling could occur and give rise to abnormal glutamatergic neurotransmission in schizophrenia. Using multiple cohorts of postmortem tissue, we have examined these synaptic molecules in schizophrenic thalamus. The expression of NR1 and NR2C subunit transcripts is decreased in the thalamus in schizophrenia. Interestingly, three intracellular PSD molecules that link the NMDA receptor to signal transduction pathways are also abnormally expressed. Additionally, several of the cell surface and vesicular transporters are abnormal in the schizophrenic thalamus. While occasional findings of abnormal receptor expression are made, the most dramatic and consistent alterations that we have found in the thalamus in schizophrenia involve the family of intracellular signaling/scaffolding molecules. We propose that schizophrenia has a glutamatergic component that involves alterations in the intracellular machinery that is coupled to glutamate receptors, in addition to abnormalities of the receptors themselves. Our data suggest that schizophrenia is associated with abnormal glutamate receptor-related intracellular signaling in the thalamus, and point to novel targets for innovative drug discovery.en_US
dc.format.extent11011773 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2003 New York Academy of Sciencesen_US
dc.subject.otherGlutamate Synapseen_US
dc.subject.otherSchizophreniaen_US
dc.subject.otherPhencyclidineen_US
dc.subject.otherExcitatory Amino Acid Transportersen_US
dc.subject.otherThalamic Anatomyen_US
dc.titleMolecular Abnormalities of the Glutamate Synapse in the Thalamus in Schizophreniaen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumMental Health Research Institute and Department of Psychiatry, University of Michigan, Ann Arbor, Michigan 48109–0720, USAen_US
dc.identifier.pmid14684436en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75484/1/annals.1300.005.pdf
dc.identifier.doi10.1196/annals.1300.005en_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreferenceKrystal, J.H. et al. 1994. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 51: 199 – 214.en_US
dc.identifier.citedreferenceJavitt, D.C. & S.R. Zukin. 1991. Recent advances in the phencyclidine model of schizophrenia. Am. J. Psychiatry 148: 1301 – 1308.en_US
dc.identifier.citedreferenceLahti, A.C. et al. 1995. Ketamine activates psychosis and alters limbic blood flow in schizophrenia. Neuroreport 6: 869 – 872.en_US
dc.identifier.citedreferenceLuby, E. et al. 1962. Model psychoses and schizophrenia. Am. J. Psychiatry 119: 61 – 67.en_US
dc.identifier.citedreferenceItil, T. et al. 1967. Effect of phencyclidine in chronic schizophrenics. Can. Psychiatr. Assoc. J. 12: 209 – 212.en_US
dc.identifier.citedreferenceAanonsen, L.M. & G.L. Wilcox. 1986. Phencyclidine selectively blocks a spinal action of N-methyl-D-aspartate in mice. Neurosci. Lett. 67: 191 – 197.en_US
dc.identifier.citedreferenceJentsch, J.D. & R.H. Roth. 1999. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20: 201 – 225.en_US
dc.identifier.citedreferenceHeresco-Levy, U. et al. 2002. Placebo-controlled trial of D-cycloserine added to conventional neuroleptics, olanzapine, or risperidone in schizophrenia. Am. J. Psychiatry 159: 480 – 482.en_US
dc.identifier.citedreferenceHeresco-Levy, U. et al. 1998. Double-blind, placebo-controlled, crossover trial of D-cycloserine adjuvant therapy for treatment-resistant schizophrenia. Int. J. Neuropsychopharmcol. 1: 131 – 135.en_US
dc.identifier.citedreferenceHeresco-Levy, U. et al. 1999. Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch. Gen. Psychiatry 56: 29 – 36.en_US
dc.identifier.citedreferenceEvins, A.E. et al. 2002. D-Cycloserine added to risperidone in patients with primary negative symptoms of schizophrenia. Schizophr. Res. 56: 19 – 23.en_US
dc.identifier.citedreferenceGreene, R. et al. 2000. Short-term and long-term effects of N-methyl-D-aspartate receptor hypofunction. Arch. Gen. Psychiatry 57: 1180 – 1181.en_US
dc.identifier.citedreferenceFarber, N.B., J.W. Newcomer & J.W. Olney. 1999. Glycine agonists: what can they teach us about schizophrenia ? Arch. Gen. Psychiatry 56: 13 – 17.en_US
dc.identifier.citedreferenceDanbolt, N.C. 2001. Glutamate uptake. Prog. Neurobiol. 65: 1 – 105.en_US
dc.identifier.citedreferenceMasson, J. et al. 1999. Neurotransmitter transporters in the central nervous system. Pharmacol. Rev. 51: 439 – 464.en_US
dc.identifier.citedreferenceKanai, Y., C.P. Smith & M.A. Hediger. 1993. A new family of neurotransmitter transporters: the high-affinity glutamate transporters. FASEB J. 7: 1450 – 1459.en_US
dc.identifier.citedreferenceTakamori, S. et al. 2000. Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407: 189 – 194.en_US
dc.identifier.citedreferenceFremeau, R.T., Jr. et al. 2001. The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31: 247 – 260.en_US
dc.identifier.citedreferenceBellocchio, E.E. et al. 2000. Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289: 957 – 960.en_US
dc.identifier.citedreferenceAihara, Y. et al. 2000. Molecular cloning of a novel brain-type Na(+)-dependent inorganic phosphate cotransporter. J. Neurochem. 74: 2622 – 2625.en_US
dc.identifier.citedreferenceBellocchio, E.E. et al. 1998. The localization of the brain-specific inorganic phosphate transporter suggests a specific presynaptic role in glutamatergic transmission. J. Neurosci. 18: 8648 – 8659.en_US
dc.identifier.citedreferenceZhou, M. & H.K. Kimelberg. 2001. Freshly isolated hippocampal CA1 astrocytes comprise two populations differing in glutamate transporter and AMPA receptor expression. J. Neurosci. 21: 7901 – 7908.en_US
dc.identifier.citedreferenceBleakman, D. & D. Lodge. 1998. Neuropharmacology of AMPA and kainate receptors. Neuropharmacology 37: 1187 – 1204.en_US
dc.identifier.citedreferenceHollmann, M. & S. Heinemann. 1994. Cloned glutamate receptors. Annu. Rev. Neurosci. 17: 31 – 108.en_US
dc.identifier.citedreferenceNakanishi, S. 1992. Molecular diversity of glutamate receptors and implications for brain function. Science 258: 597 – 603.en_US
dc.identifier.citedreferenceNagao, S., S. Kwak & I. Kanazawa. 1997. EAAT4, a glutamate transporter with properties of a chloride channel, is predominantly localized in Purkinje cell dendrites, and forms parasagittal compartments in rat cerebellum. Neuroscience 78: 929 – 933.en_US
dc.identifier.citedreferenceBar-Peled, O. et al. 1997. Distribution of glutamate transporter subtypes during human brain development. J. Neurochem. 69: 2571 – 2580.en_US
dc.identifier.citedreferenceMilton, I.D. et al. 1997. Expression of the glial glutamate transporter EAAT2 in the human CNS: an immunohistochemical study. Brain Res. Mol. Brain Res. 52: 17 – 31.en_US
dc.identifier.citedreferenceLehre, K.P. et al. 1995. Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J. Neurosci. 15: 1835 – 1853.en_US
dc.identifier.citedreferenceRothstein, J.D. et al. 1994. Localization of neuronal and glial glutamate transporters. Neuron 13: 713 – 725.en_US
dc.identifier.citedreferenceFuruta, A., J.D. Rothstein & L.J. Martin. 1997. Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J. Neurosci. 17: 8363 – 8375.en_US
dc.identifier.citedreferenceFuruta, A. et al. 1997. Cellular and synaptic localization of the neuronal glutamate transporters excitatory amino acid transporter 3 and 4. Neuroscience 81: 1031 – 1042.en_US
dc.identifier.citedreferenceYamada, K. et al. 1996. EAAT4 is a post-synaptic glutamate transporter at Purkinje cell synapses. Neuroreport 7: 2013 – 2017.en_US
dc.identifier.citedreferenceYamada, K. et al. 1997. Changes in expression and distribution of the glutamate transporter EAAT4 in developing mouse Purkinje cells. Neurosci. Res. 27: 191 – 198.en_US
dc.identifier.citedreferenceLaake, J.H. et al. 1999. Postembedding immunogold labelling reveals subcellular localization and pathway-specific enrichment of phosphate activated glutaminase in rat cerebellum. Neuroscience 88: 1137 – 1151.en_US
dc.identifier.citedreferenceMaragakis, N.J. & J.D. Rothstein. 2001. Glutamate transporters in neurologic disease. Arch. Neurol. 58: 365 – 370.en_US
dc.identifier.citedreferenceMarie, H. et al. 2002. The amino terminus of the glial glutamate transporter GLT-1 interacts with the LIM protein Ajuba. Mol. Cell. Neurosci. 19: 152 – 164.en_US
dc.identifier.citedreferenceLin, C.I. et al. 2001. Modulation of the neuronal glutamate transporter EAAC1 by the interacting protein GTRAP3-18. Nature 410: 84 – 88.en_US
dc.identifier.citedreferenceJackson, M. et al. 2001. Modulation of the neuronal glutamate transporter EAAT4 by two interacting proteins. Nature 410: 89 – 93.en_US
dc.identifier.citedreferenceMeador-Woodruff, J.M., A.J. Hogg, et al. 2001. Striatal ionotropic glutamate receptor expression in schizophrenia, bipolar disorder, and major depressive disorder. Brain Res. Bull. 55 ( 5 ): 631 – 640.en_US
dc.identifier.citedreferenceAndreasen, N.C., S. Paradiso, et al. 1998. “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry ? Schizophr. Bull. 24 ( 2 ): 203 – 218.en_US
dc.identifier.citedreferenceJones, E.G. 1997. Cortical development and thalamic pathology in schizophrenia. Schizophr. Bull. 23 ( 3 ): 483 – 501.en_US
dc.identifier.citedreferenceOke, A.F. & R.N. Adams. 1987. Elevated thalamic dopamine: possible link to sensory dysfunctions in schizophrenia. Schizophr. Bull. 13 ( 4 ): 589 – 604.en_US
dc.identifier.citedreferenceScheibel, A.B. 1997. The thalamus and neuropsychiatric illness. J. Neuropsychiatry Clin. Neurosci. 9 ( 3 ): 342 – 353.en_US
dc.identifier.citedreference45 Steriade, M., E.G. Jones, et al. 1997. Thalamus: Organization and Function. Elsevier. Amsterdam.en_US
dc.identifier.citedreference46 Jones, E.G. 1998. The thalamus of primates. In The Primate Nervous System, Part II. F.E. Bloom, A. Bjorklund & T. Hokfelt, Eds.: 14: 1–246. Elsevier. New York.en_US
dc.identifier.citedreferenceSalt, T.E. & S.A. Eaton. 1996. Functions of ionotropic and metabotropic glutamate receptors in sensory transmission in the mammalian thalamus. Prog. Neurobiol. 48 ( 1 ): 55 – 72.en_US
dc.identifier.citedreferencePakkenberg, B. 1990. Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch. Gen. Psychiatry 47 ( 11 ): 1023 – 1028.en_US
dc.identifier.citedreferencePakkenberg, B. 1992. The volume of the mediodorsal thalamic nucleus in treated and untreated schizophrenics. Schizophr. Res. 7 ( 2 ): 95 – 100.en_US
dc.identifier.citedreferencePakkenberg, B. 1993. Leucotomized schizophrenics lose neurons in the mediodorsal thalamic nucleus. Neuropathol. Appl. Neurobiol. 19 ( 5 ): 373 – 380.en_US
dc.identifier.citedreferencePopken, G.J., W.E. Bunney, Jr., et al. 2000. Subnucleus-specific loss of neurons in medial thalamus of schizophrenics. Proc. Natl. Acad. Sci. USA 97 ( 16 ): 9276 – 9780.en_US
dc.identifier.citedreferenceYoung, K., K. Manaye, et al. 2000. Reduced number of mediodorsal and anterior thalamic neurons in schizophrenia. Biol. Psychiatry 47 ( 11 ): 944 – 953.en_US
dc.identifier.citedreferenceByne, W., M.S. Buchsbaum, et al. 2002. Postmortem assessment of thalamic nuclear volumes in subjects with schizophrenia. Am. J. Psychiatry 159 ( 1 ): 59 – 65.en_US
dc.identifier.citedreferenceLewis, D.A., D.A. Cruz, et al. 2001. Lamina-specific deficits in parvalbumin-immunoreactive varicosities in the prefrontal cortex of subjects with schizophrenia: evidence for fewer projections from the thalamus. Am. J. Psychiatry 158 ( 9 ): 1411 – 1422.en_US
dc.identifier.citedreferenceDanos, P., B. Baumann, et al. 2002. The ventral lateral posterior nucleus of the thalamus in schizophrenia: a post-mortem study. Psychiatry Res. 114 ( 1 ): 1 – 9.en_US
dc.identifier.citedreferenceAndreasen, N.C., J.C. Ehrhardt, et al. 1990. Magnetic resonance imaging of the brain in schizophrenia. The pathophysiologic significance of structural abnormalities. Arch. Gen. Psychiatry 47 ( 1 ): 35 – 44.en_US
dc.identifier.citedreferenceAndreasen, N.C., S. Arndt, et al. 1994. Thalamic abnormalities in schizophrenia visualized through magnetic resonance image averaging. Science 266 ( 5183 ): 294 – 298.en_US
dc.identifier.citedreferenceBuchsbaum, M.S. & E.A. Hazlett. 1998. Positron emission tomography studies of abnormal glucose metabolism in schizophrenia. Schizophr. Bull. 24 ( 3 ): 343 – 364.en_US
dc.identifier.citedreferenceDasari, M., L. Friedman, et al. 1999. A magnetic resonance imaging study of thalamic area in adolescent patients with either schizophrenia or bipolar disorder as compared to healthy controls. Psychiatry Res. 91 ( 3 ): 155 – 162.en_US
dc.identifier.citedreferenceFlaum, M., V.W. Swayze, 2nd, et al. 1995. Effects of diagnosis, laterality, and gender on brain morphology in schizophrenia. Am. J. Psychiatry 152 ( 5 ): 704 – 714.en_US
dc.identifier.citedreferenceGilbert, A.R., D.R. Rosenberg, et al. 2001. Thalamic volumes in patients with first-episode schizophrenia. Am. J. Psychiatry 158 ( 4 ): 618 – 624.en_US
dc.identifier.citedreferenceGur, R.E., V. Maany, et al. 1998. Subcortical MRI volumes in neuroleptic-naive and treated patients with schizophrenia. Am. J. Psychiatry 155 ( 12 ): 1711 – 1717.en_US
dc.identifier.citedreferenceStaal, W.G., H.E. Hulshoff Pol, et al. 1998. Partial volume decrease of the thalamus in relatives of patients with schizophrenia. Am. J. Psychiatry 155 ( 12 ): 1784 – 1786.en_US
dc.identifier.citedreferenceEttinger, U., X.A. Chitnis, et al. 2001. Magnetic resonance imaging of the thalamus in first-episode psychosis. Am. J. Psychiatry 158 ( 1 ): 116 – 118.en_US
dc.identifier.citedreferenceKonick, L.C. & L. Friedman. 2001. Meta-analysis of thalamic size in schizophrenia. Biol. Psychiatry 49 ( 1 ): 28 – 38.en_US
dc.identifier.citedreferenceByne, W., M.S. Buchsbaum, et al. 2001. Magnetic resonance imaging of the thalamic mediodorsal nucleus and pulvinar in schizophrenia and schizotypal personality disorder. Arch. Gen. Psychiatry 58 ( 2 ): 133 – 140.en_US
dc.identifier.citedreferenceBuchsbaum, M.S., T. Someya, et al. 1996. PET and MRI of the thalamus in never-medicated patients with schizophrenia. Am. J. Psychiatry 153 ( 2 ): 191 – 199.en_US
dc.identifier.citedreferenceHazlett, E.A., M.S. Buchsbaum, et al. 1999. Three-dimensional analysis with MRI and PET of the size, shape, and function of the thalamus in the schizophrenia spectrum. Am. J. Psychiatry 156 ( 8 ): 1190 – 1199.en_US
dc.identifier.citedreferenceResnick, S.M., R.E. Gur, et al. 1988. Positron emission tomography and subcortical glucose metabolism in schizophrenia. Psychiatry Res. 24 ( 1 ): 1 – 11.en_US
dc.identifier.citedreferenceTamminga, C.A., G.K. Thaker, et al. 1992. Limbic system abnormalities identified in schizophrenia using positron emission tomography with fluorodeoxyglucose and neocortical alterations with deficit syndrome. Arch. Gen. Psychiatry 49 ( 7 ): 522 – 530.en_US
dc.identifier.citedreferenceVita, A., S. Bressi, et al. 1995. High-resolution SPECT study of regional cerebral blood flow in drug-free and drug-naive schizophrenic patients. Am. J. Psychiatry 152 ( 6 ): 876 – 882.en_US
dc.identifier.citedreferenceAndreasen, N.C., D.S. O'Leary, et al. 1996. Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc. Natl. Acad. Sci. USA 93 ( 18 ): 9985 – 9990.en_US
dc.identifier.citedreferenceHeckers, S., S.L. Rauch, et al. 1998. Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat. Neurosci. 1 ( 4 ): 318 – 323.en_US
dc.identifier.citedreferenceSilbersweig, D.A., E. Stern, et al. 1995. A functional neuroanatomy of hallucinations in schizophrenia. Nature 378 ( 6553 ): 176 – 179.en_US
dc.identifier.citedreferenceBurnashev, N., H. Monyer, et al. 1992. Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8: 189 – 198.en_US
dc.identifier.citedreferenceGeiger, J.R.P., T. Melcher, et al. 1995. Relative abundance of subunit mRNAs determines gating and Ca 2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15: 193 – 204.en_US
dc.identifier.citedreferenceHollmann, M., M. Hartley, et al. 1991. Ca 2+ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition. Science 252: 851 – 853.en_US
dc.identifier.citedreferenceJonas, P., C. Racca, et al. 1994. Differences in Ca 2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 12: 1281 – 1289.en_US
dc.identifier.citedreferenceSwanson, G.T., S.K. Kamboj, et al. 1997. Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition. J. Neurosci. 17: 58 – 69.en_US
dc.identifier.citedreferenceAndersson, O., A. Stenqvist, et al. 2001. Nucleotide sequence, genomic organization, and chromosomal localization of genes encoding the human NMDA receptor subunits NR3A and NR3B. Genomics 78 ( 3 ): 178 – 184.en_US
dc.identifier.citedreferenceDurand, G.M., M.V.L. Bennett, et al. 1993. Splice variants of the N-methyl-D-aspartate receptor NR1 identify domains involved in regulation of polyamines and protein kinase C. Proc. Natl. Acad. Sci. USA 90: 6731 – 6735.en_US
dc.identifier.citedreferenceBoeckman, F.A. & E. Aizenman. 1994. Stable transfection of the NMDAR1 subunit in Chinese hamster ovary cells fails to produce a functional N-methyl-D-aspartate receptor. Neurosci. Lett. 173: 189 – 192.en_US
dc.identifier.citedreferenceGallagher, M.J., H. Huang, et al. 1996. Interactions between ifenprodil and the NR2B subunit of the N-methyl-D-aspartate receptor. J. Biol. Chem. 271: 9603 – 9611.en_US
dc.identifier.citedreferenceGrimwood, S., B. LeBourdelles, et al. 1995. Recombinant human NMDA homomeric NMDAR1 receptors expressed in mammalian cells form a high-affinity glycine antagonist binding site. J. Neurochem. 64: 525 – 530.en_US
dc.identifier.citedreferenceLynch, D.R., N.J. Anegawa, et al. 1994. N-methyl-D-Aspartate receptors: different subunit requirements for binding of glutamate antagonists, glycine antagonists, and channel-blocking agents. Mol. Pharmacol. 45: 540 – 545.en_US
dc.identifier.citedreferenceMonyer, H.R., R. Sprengel, et al. 1992. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256: 1217 – 1220.en_US
dc.identifier.citedreferenceRodriguez-Paz, J.M., Y. Anantharam, et al. 1995. Block of the N-methyl-D-aspartate receptor by phencyclidine-like drugs is influenced by alternative splicing. Neurosci. Lett. 190: 147 – 150.en_US
dc.identifier.citedreferenceIbrahim, H., A. Hogg, et al. 2000. Ionotropic glutamate receptor binding and subunit mRNA expression in thalamic nuclei in schizophrenia. Am. J. Psychiatry 157: 1811 – 1823.en_US
dc.identifier.citedreferenceClinton, S.M., V. Haroutunian, et al. 2003. Altered transcript expression of NMDA receptor-associated postsynaptic proteins in the thalamus of subjects with schizophrenia. Am. J. Psychiatry 160 ( 6 ): 1100 – 1109.en_US
dc.identifier.citedreferencePopken, G.J., M.G. Leggio, et al. 2002. Expression of mRNAs related to the GABAergic and glutamatergic neurotransmitter systems in the human thalamus: normal and schizophrenic. Thalamus & Related Systems 1: 349 – 369.en_US
dc.identifier.citedreferenceRichardson-Burns, S.M., V. Haroutunian, et al. 2000. Metabotropic glutamate receptor mRNA expression in the schizophrenic thalamus. Biol. Psychiatry 47: 22 – 28.en_US
dc.identifier.citedreferenceSheng, M. & D. Pak. 2000. Ligand-gated ion channel interactions with cytoskeletal and signaling proteins. Annu. Rev. Physiol. 62: 755 – 778.en_US
dc.identifier.citedreferenceEhlers, M., E. Fung, et al. 1998. Splice variant-specific interaction of the NMDA receptor subunit NR1 with neuronal intermediate filaments. J. Neurosci. 18 ( 2 ): 720 – 730.en_US
dc.identifier.citedreferenceLin, J., M. Wyszynski, et al. 1998. Yotiao, a novel protein of neuromuscular junction and brain that interacts with specific splice variants of NMDA receptor subunit NR1. J. Neurosci. 18 ( 6 ): 2017 – 2027.en_US
dc.identifier.citedreferenceXu, Z., D.L. Dong, et al. 1994. Neuronal intermediate filaments: new progress on an old subject. Curr. Opin. Neurobiol. 4 ( 5 ): 655 – 661.en_US
dc.identifier.citedreferenceEhlers, M.D., W.G. Tingley, et al. 1995. Regulated subcellular distribution of the NR1 subunit of the NMDA receptor. Science 269 ( 5231 ): 1734 – 1737.en_US
dc.identifier.citedreferenceShenolikar, S. 1994. Protein serine/threonine phosphatases—new avenues for cell regulation. Annu. Rev. Cell Biol. 10: 55 – 86.en_US
dc.identifier.citedreferenceTerry-Lorenzo, R., M. Inoue, et al. 2000. Neurofilament-L is a protein phosphatase-1-binding protein associated with neuronal plasma membrane and post-synaptic density. J. Biol. Chem. 275 ( 4 ): 2139 – 2446.en_US
dc.identifier.citedreferenceDracheva, S., S.A. Marras, et al. 2001. N-methyl-D-aspartic acid receptor expression in the dorsolateral prefrontal cortex of elderly patients with schizophrenia. Am. J. Psychiatry 158 ( 9 ): 1400 – 1410.en_US
dc.identifier.citedreferenceOhnuma, T., H. Kato, et al. 2000. Gene expression of PSD95 in prefrontal cortex and hippocampus in schizophrenia. NeuroReport 11 ( 14 ): 3133 – 3137.en_US
dc.identifier.citedreferenceSmith, R.E., V. Haroutunian, et al. 2001. Expression of excitatory amino acid transporter transcripts in the thalamus of subjects with schizophrenia. Am. J. Psychiatry 158 ( 9 ): 1393 – 1399.en_US
dc.identifier.citedreferenceSmith, R.E., V. Haroutunian, et al. 2001. Vesicular glutamate transporter transcript expression in the thalamus in schizophrenia. Neuroreport 12 ( 13 ): 1 – 3.en_US
dc.identifier.citedreferenceMcCullumsmith, R.E., V. Haroutunian, et al. 2002. Expression of glutaminase transcripts in the thalamus of subjects with schizophrenia. Biol. Psychiatry 51: 25.en_US
dc.identifier.citedreferenceGluck, M.R. et al. 2002. Implications for altered glutamate and GABA metabolism in the dorsolateral prefrontal cortex of aged schizophrenic patients. Am. J. Psychiatry 159: 1165 – 1173.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.