Show simple item record

Neural Circuits for Taste: Excitation, Inhibition, and Synaptic Plasticity in the Rostral Gustatory Zone of the Nucleus of the Solitary Tract a

dc.contributor.authorBradley, Robert M.en_US
dc.contributor.authorGrabauskas, Gintautasen_US
dc.date.accessioned2010-06-01T22:32:22Z
dc.date.available2010-06-01T22:32:22Z
dc.date.issued1998-11en_US
dc.identifier.citationBRADLEY, ROBERT M.; GRABAUSKAS, GINTAUTAS (1998). "Neural Circuits for Taste: Excitation, Inhibition, and Synaptic Plasticity in the Rostral Gustatory Zone of the Nucleus of the Solitary Tract a ." Annals of the New York Academy of Sciences 855(1 OLFACTION AND TASTE XII: AN INTERNATIONAL SYMPOSIUM ): 467-474. <http://hdl.handle.net/2027.42/75522>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75522
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=9929640&dopt=citationen_US
dc.description.abstractThe rostral nucleus of the solitary tract (rNST) plays a key role in modulating, organizing and distributing the sensory information arriving at the central nervous system from gustatory receptors. However, except for some anatomical studies of rNST synapses, the neural circuits responsible for this first stage in synaptic processing of taste information are largely unknown. Over the past few years we have used an in vitro brain slice preparation of the rNST to study synaptic processing, and it has become apparent that the rNST is a very complex neural relay. Synaptic potentials recorded in rNST neurons resulting from stimulation of afferent taste fibers are a composite of excitatory and inhibitory post synaptic potentials. Pure excitatory postsynaptic potentials (EPSP) can be isolated by using Γ-aminobutyric acid type A (GABAA) receptor blockers to eliminate the inhibitory postsynaptic potentials (IPSP). Application of glutamate ionotropic receptor blockers effectively eliminates all postsynaptic activity, indicating that glutamate is the transmitter at the first central synapse in the taste pathway. Stimulation of the afferent taste fibers originating from the anterior (chorda tympani) and posterior (glossopharyngeal) tongue results in a postsynaptic potential that is a complex sum of the two individual potentials. Thus, rNST neurons receive convergent synaptic input from the anterior and posterior tongue. The IPSP component of the synaptic potentials in rNST results from stimulation of interneurons. If these IPSPs are initiated by tetanic stimulation they undergo both short-term and long-term changes. Short-term changes result in the development of biphasic depolarizing IPSPs, and long-term changes result in potentiation of the IPSPs that can last over an hr in some neurons. This remarkable synaptic plasticity may be involved in the mechanism of learned taste behaviors. Synaptic transmission in rNST consists of excitation combined with inhibition. The inhibition does not simply depress excitation but probably serves many roles such as shaping and limiting excitation, coordinating the timing of synaptic events and participating in synaptic plasticity. Knowledge of these synaptic mechanisms is essential to understanding how the rNST processes taste information.en_US
dc.format.extent673534 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsNew York Academy of Sciences 1998en_US
dc.titleNeural Circuits for Taste: Excitation, Inhibition, and Synaptic Plasticity in the Rostral Gustatory Zone of the Nucleus of the Solitary Tract aen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, USAen_US
dc.contributor.affiliationumDepartment of Physiology, Medical School, University of Michigan, Ann Arbor, Michigan 48109-0622, USAen_US
dc.identifier.pmid9929640en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75522/1/j.1749-6632.1998.tb10607.x.pdf
dc.identifier.doi10.1111/j.1749-6632.1998.tb10607.xen_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreferenceBeckstead, R. M. & R. Norgren. 1979. An autoradiographic examination of the central distribution of the trigeminal, facial, glossopharyngeal, and vagal nerves in the monkey. J. Comp. Neurol. 184: 455 – 472.en_US
dc.identifier.citedreferenceBradley, R. M. & R. D. Sweazey. 1989. Intrinsic characteristics of gustatory neurons in rat solitary nucleus [abstract]. Soc. Neurosci. Abstr. 15: 930.en_US
dc.identifier.citedreferenceBradley, R. M. & R. D. Sweazey. 1990. in vitro intracellular recordings from gustatory neurons in the rat solitary nucleus. Brain Res. 508: 168 – 171.en_US
dc.identifier.citedreferenceFrank, M. E., S. L. Bieber & D. V. Smith. 1988. The organization of taste sensibilities in hamster chorda tympani nerve fibers. J. Gen. Physiol. 91: 861 – 896.en_US
dc.identifier.citedreferenceGrabauskas, G. & R. M. Bradley. 1996. Synaptic interactions due to convergent input from gustatory afferent fibers in the rostral nucleus of the solitary tract. J. Neurophysiol. 76: 2919 – 2927.en_US
dc.identifier.citedreferenceHamilton, R. B. & R. Norgren. 1984. Central projections of gustatory nerves in the rat. J. Comp. Neurol. 222: 560 – 577.en_US
dc.identifier.citedreferenceHarrison, T. A. & R. M. Bradley. 1988. An in vitro brain slice preparation to study gustatory-salivatory nucleus interactions [abstract]. Chem. Senses 13: 696.en_US
dc.identifier.citedreferenceHarrison, T. A. & R. M. Bradley. 1988. Characteristics of parasympathetic secretomotor neurons studied in vitro [abstract]. Soc. Neurosci. Abstr. 14: 1182.en_US
dc.identifier.citedreferenceHill, D. L., C. M. Mistretta & R. M. Bradley. 1982. Developmental changes in taste response characteristics of rat single chorda tympani fibers. J. Neurosci. 2: 782 – 790.en_US
dc.identifier.citedreferenceLambert, N. A. & L. M. Grover. 1995. The mechanism of biphasic GABA responses. Science 269: 928 – 929.en_US
dc.identifier.citedreferenceLasiter, P. S. & D. L. Kachele. 1988. Organization of GABA and GABA-transaminase containing neurons in the gustatory zone of the nucleus of the solitary tract. Brain Res. Bull. 21: 623 – 636.en_US
dc.identifier.citedreferenceLi, C. S. & D. V. Smith. 1997. Glutamate receptor antagonists block gustatory afferent input to the nucleus of the solitary tract. J. Neurophysiol. 77: 1514 – 1525.en_US
dc.identifier.citedreferenceOgawa, H., T. Hayama & Y. Yamashita. 1988. Thermal sensitivity of neurons in a rostral part of the rat solitary tract nucleus. Brain Res. 454: 321 – 331.en_US
dc.identifier.citedreferenceOgawa, H., T. Imoto & T. Hayama. 1984. Responsiveness of solitario-parabrachial relay neurons to taste and mechanical stimulation applied to the oral cavity in rats. Exp. Brain Res. 54: 349 – 358.en_US
dc.identifier.citedreference15 RamÕn y Cajal, S. 1909. Histologie du SystÈme Nerveux de l'Homme et des VertÉbrÉs. Maloine. Paris.en_US
dc.identifier.citedreference16 Shepherd, G. M. & C. A. Greer. 1990. Olfactory Bulb. In The Synaptic Organization of the Brain. G. M. Shepherd, Ed.: 133-169. Oxford University Press. New York.en_US
dc.identifier.citedreferenceStaley, K. J., B. L. Soldo & W. R. Proctor. 1995. Ionic mechanisms of neuronal excitation by inhibitory GABA A receptors. Science 269: 977 – 981.en_US
dc.identifier.citedreferenceTorvik, A. 1956. Afferent connections to the sensory trigeminal nuclei, the nucleus of the solitary tract and adjacent structures-an experimental study in the rat. J. Comp. Neurol. 106: 51 – 141.en_US
dc.identifier.citedreferenceWang, L. & R. M. Bradley. 1993. Influence of GABA on neurons of the gustatory zone of the rat nucleus of the solitary tract. Brain Res. 616: 144 – 153.en_US
dc.identifier.citedreferenceWang, L. & R. M. Bradley. 1995. in vitro study of afferent synaptic transmission in the rostral gustatory zone of the rat nucleus of the solitary tract. Brain Res. 702: 188 – 198.en_US
dc.identifier.citedreferenceWhitehead, M. C. 1986. Anatomy of the gustatory system in the hamster: Synaptology of facial afferent terminals in the solitary nucleus. J. Comp. Neurol. 244: 72 – 85.en_US
dc.identifier.citedreferenceWhitehead, M. C. 1988. Neuronal architecture of the nucleus of the solitary tract in the hamster. J. Comp. Neurol. 276: 547 – 572.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.