Show simple item record

A two-component regulator induces the transmission phenotype of stationary-phase Legionella pneumophila

dc.contributor.authorHammer, Brian K.en_US
dc.contributor.authorTateda, Eiko S.en_US
dc.contributor.authorSwanson, Michele S.en_US
dc.date.accessioned2010-06-01T22:32:58Z
dc.date.available2010-06-01T22:32:58Z
dc.date.issued2002-04en_US
dc.identifier.citationHammer, Brian K . ; Tateda, Eiko S . ; Swanson, Michele S . (2002). "A two-component regulator induces the transmission phenotype of stationary-phase Legionella pneumophila ." Molecular Microbiology 44(1): 107-118. <http://hdl.handle.net/2027.42/75531>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75531
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=11967072&dopt=citationen_US
dc.description.abstractPathogenic Legionella pneumophila evolved as a parasite of aquatic amoebae. To persist in the environment, the microbe must be proficient at both replication and transmission. In laboratory cultures, as nutrients become scarce a stringent response-like pathway coordinates exit from the exponential growth phase with induction of traits correlated with virulence, including motility. A screen for mutants that express the flagellin gene poorly identified five activators of virulence: LetA/LetS, a two-component regulator homologous to GacA/GacS of Pseudomonas and SirA/BarA of Salmonella ; the stationary-phase sigma factor RpoS; the flagellar sigma factor FliA; and a new locus, letE . Unlike wild type, post-exponential-phase letA and letS mutants were not motile, cytotoxic, sodium sensitive or proficient at infecting macrophages. L. pneumophila also required fliA to become motile, cytotoxic and to infect macrophages efficiently and letE to express sodium sensitivity and maximal motility and cytotoxicity. When induced to express RelA, all of the strains exited the exponential phase, but only wild type converted to the fully virulent form. In contrast, intracellular replication was independent of letA, letS, letE or fliA . Together, the data indicate that, as the nutrient supply wanes, ppGpp triggers a regulatory cascade mediated by LetA/ LetS, RpoS, FliA and letE that coordinates differentiation of replicating L. pneumophila to a transmissible form.en_US
dc.format.extent583397 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2002 Blackwell Science Ltd.en_US
dc.titleA two-component regulator induces the transmission phenotype of stationary-phase Legionella pneumophilaen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan Medical School, 6734 Medical Sciences Building II, Ann Arbor, MI 48109-0620, USA.en_US
dc.identifier.pmid11967072en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75531/1/j.1365-2958.2002.02884.x.pdf
dc.identifier.doi10.1046/j.1365-2958.2002.02884.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceAarons, S., Abbas, A., Adams, C., Fenton, A., and O’Gara, F. ( 2000 ) A regulatory RNA (PrrB RNA) modulates expression of secondary metabolite genes in Pseudomonas fluorescens F113. J Bacteriol 182: 3913 – 3919.en_US
dc.identifier.citedreferenceAhmer, B.M., van Reeuwijk, J., Watson, P.R., Wallis, T.S., and Heffron, F. ( 1999 ) Salmonella SirA is a global regulator of genes mediating enteropathogenesis. Mol Microbiol 31: 971 – 982.en_US
dc.identifier.citedreferenceAlli, O.A.T., Gao, L.-Y., Pedersen, L.L., Zink, S., Radulic, M., Doric, M., and Abu Kwaik, Y. ( 2000 ) Temporal pore formation-mediated egress from macrophages and alveolar epithelial cells by Legionella pneumophila. Infect Immun 68: 6431 – 6440.en_US
dc.identifier.citedreferenceAltier, C., Suyemoto, M., Ruiz, A.I., Burnham, K.D., and Maurer, R. ( 2000a ) Characterization of two novel regulatory genes affecting Salmonella invasion gene expression. Mol Microbiol 35: 635 – 646.en_US
dc.identifier.citedreferenceAltier, C., Suyemoto, M., and Lawhon, S.D. ( 2000b ) Regulation of Salmonella enterica serovar Typhimurium invasion genes by csrA. Infect Immun 68: 6790 – 6797.en_US
dc.identifier.citedreferenceBachman, M.A., and Swanson, M.S. ( 2001 ) RpoS cooperates with other factors to induce Legionella pneumophila virulence in the stationary phase. Mol Microbiol 40: 1201 – 1214.en_US
dc.identifier.citedreferenceBerger, K.H., and Isberg, R.R. ( 1993 ) Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol Microbiol 7: 7 – 19.en_US
dc.identifier.citedreferenceBlumer, C., Heeb, S., Pessi, G., and Haas, D. ( 1999 ) Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc Natl Acad Sci USA 96: 14073 – 14078.en_US
dc.identifier.citedreferenceBrinkman, F.S.L., MacFarlane, E.L.A., Warrener, P., and Hancock, R.E.W. ( 2001 ) Evolutionary relationships among virulence-associated histidine kinases. Infect Immun 69: 5207 – 5211.en_US
dc.identifier.citedreferenceBrown, M.R., and Barker, J. ( 1999 ) Unexplored reservoirs of pathogenic bacteria: protozoa and biofilms. Trends Microbiol 7: 46 – 50.en_US
dc.identifier.citedreferenceByrne, B., and Swanson, M.S. ( 1998 ) Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect Immun 66: 3029 – 3034.en_US
dc.identifier.citedreferenceCashel, M., Gentry, D.R., Hernandez, V.J., and Vinella, D. ( 1996 ) The stringent response. In: Escherichia coli and Salmonella: Cellular and Molecular Biology. Neidhardt F.C. (ed. in chief). Washington, DC: American Society for Microbiology Press, pp. 1458 – 1496.en_US
dc.identifier.citedreferenceCianciotto, N., Eisenstein, B.I., Engleberg, N.C., and Shuman, H. ( 1989 ) Genetics and molecular pathogenesis of Legionella pneumophila, an intracellular parasite of macrophages. Mol Biol Med 6: 409 – 424.en_US
dc.identifier.citedreferenceCoers, J., Monahan, C.N., and Roy, C.R. ( 1999 ) Modulation of phagosome biogenesis by Legionella pneumophila creates an organelle permissive for intracellular growth. Nature Cell Biol 1: 451 – 453.en_US
dc.identifier.citedreferenceCotter, P.A., and DiRita, V.J. ( 2000 ) Bacterial virulence gene regulation: an evolutionary perspective. Annu Rev Microbiol 54: 519 – 565.en_US
dc.identifier.citedreferenceDanese, P.N., Snyder, W.B., Cosma, C.L., Davis, L.J., and Silhavy, T.J. ( 1995 ) The Cpx two-component signal transduction pathway of Escherichia coli regulates transcription of the gene specifying the stress-inducible periplasmic protease, DegP. Genes Dev 9: 387 – 398.en_US
dc.identifier.citedreferenceDietrich, C., Heuner, K., Brand, B.C., Hacker, J., and Steinert, M. ( 2001 ) Flagellum of Legionella pneumophila positively affects the early phase of infection of eukaryotic host cells. Infect Immun 69: 2116 – 2122.en_US
dc.identifier.citedreferenceEichelberg, K., and Galan, J.E. ( 2000 ) The flagellar sigma factor FliA (sigma (28) regulates the expression of Salmonella genes associated with the centisome 63 type III secretion system. Infect Immun 68: 2735 – 2743.en_US
dc.identifier.citedreferenceEllehauge, E., NØrregaard-Madsen, M., and SØgaard-Andersen, L. ( 1998 ) The FruA signal transduction protein provides a checkpoint for the temporal co-ordination of intercellular signals in Myxococcus xanthus development. Mol Microbiol 30: 807 – 817.en_US
dc.identifier.citedreferenceEngleberg, N.C., Cianciotto, N., Smith, J., and Eisenstein, B.I. ( 1988 ) Transfer and maintenance of small, mobilizable plasmids with ColE1 replication origins in Legionella pneumophila. Plasmid 20: 83 – 91.en_US
dc.identifier.citedreferenceEriksson, A.R., Andersson, R.A., Pirhonen, M., and Palva, E.T. ( 1998 ) Two-component regulators involved in the global control of virulence in Erwinia carotovora subsp. carotovora. Mol Plant–Microbe Interact 11: 743 – 752.en_US
dc.identifier.citedreferenceFields, B.S. ( 1996 ) The molecular ecology of legionellae. Trends Microbiol 4: 286 – 290.en_US
dc.identifier.citedreferenceGardel, C.L., and Mekalanos, J.J. ( 1996 ) Alterations in Vibrio cholerae motility phenotypes correlate with changes in virulence factor expression. Infect Immun 64: 2246 – 2255.en_US
dc.identifier.citedreferenceGoodier, R.I., and Ahmer, B.M. ( 2001 ) SirA orthologs affect both motility and virulence. J Bacteriol 183: 2249 – 2258.en_US
dc.identifier.citedreferenceGroseclose, S.L., Hall, P.A., Knowles, C.M., Adams, D.A., Park., S., Perry, F., et al. ( 2001 ) Summary of notifiable diseases, United States, 1999. Morbid Mortal Wkly Rep 48: 1 – 104.en_US
dc.identifier.citedreferenceGuiney, D.G. ( 1997 ) Regulation of bacterial virulence gene expression by the host environment. J Clin Invest 99: 565 – 569.en_US
dc.identifier.citedreferenceGuiney, D.G., Libby, S., Fang, F.C., Krause, M., and Fierer, J. ( 1995 ) Growth-phase regulation of plasmid virulence genes in Salmonella. Trends Microbiol 3: 275 – 279.en_US
dc.identifier.citedreferenceHales, L.M., and Shuman, H.A. ( 1999 ) The Legionella pneumophila rpoS gene is required for growth within Acanthamoeba castellanii. J Bacteriol 181: 4879 – 4889.en_US
dc.identifier.citedreferenceHammer, B.K., and Swanson, M.S. ( 1999 ) Co-ordination of Legionella pneumophila virulence with entry into stationary phase by ppGpp. Mol Microbiol 33: 721 – 731.en_US
dc.identifier.citedreferenceHanna, P.C., and Ireland, J.A. ( 1999 ) Understanding Bacillus anthracis pathogenesis. Trends Microbiol 7: 180 – 182.en_US
dc.identifier.citedreferenceHarb, O.S., and Abu Kwaik, Y. ( 2000 ) Characterization of a macrophage-specific infectivity locus ( milA ) of Legionella pneumophila. Infect Immun 68: 368 – 376.en_US
dc.identifier.citedreferenceHarkey, C.W., Everiss, K.D., and Peterson, K.M. ( 1994 ) The Vibrio cholerae toxin-coregulated-pilus gene tcpI encodes a homolog of methyl-accepting chemotaxis proteins. Infect Immun 62: 2669 – 2678.en_US
dc.identifier.citedreferenceHarris, B.Z., Kaiser, D., and Singer, M. ( 1998 ) The guanosine nucleotide (p)ppGpp initiates development and A-factor production in Myxococcus xanthus. Genes Dev 12: 1022 – 1035.en_US
dc.identifier.citedreferenceHase, C.C., and Mekalanos, J.J. ( 1999 ) Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA 96: 3183 – 3187.en_US
dc.identifier.citedreferenceHayashi, F., Smith, K., Ozinsky, A., Hawn, T., Yi, E., Goodlett, D., et al. ( 2001 ) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 1099 – 1103.en_US
dc.identifier.citedreferenceHeinzen, R.A., Hackstadt, T., and Samuel, J.E. ( 1999 ) Developmental biology of Coxiella burnetii. Trends Microbiol 7: 149 – 154.en_US
dc.identifier.citedreferenceHeuner, K., Bender-Beck, L., Brand, B.C., Luck, P.C., Mann, K.-H., Marre, R., et al. ( 1995 ) Cloning and genetic characterization of the flagellum subunit gene ( flaA ) of Legionella pneumophila serogroup 1. Infect Immun 63: 2499 – 2507.en_US
dc.identifier.citedreferenceHeuner, K., Hacker, J., and Brand, B.C. ( 1997 ) The alternative sigma factor σ 28 Legionella pneumophila restores flagellation and motility to an Escherichia coli fliA mutant. J Bacteriol 179: 17 – 23.en_US
dc.identifier.citedreferenceHrabak, E.M., and Willis, D.K. ( 1992 ) The lemA gene required for pathogenicity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators. J Bacteriol 174: 3011 – 3020.en_US
dc.identifier.citedreferenceHusmann, L.K., and Johnson, W. ( 1994 ) Cytotoxicity of extracellular Legionella pneumophila. Infect Immun 62: 2111 – 2114.en_US
dc.identifier.citedreferenceJohnston, C., Pegues, D.A., Hueck, C.J., Lee, A., and Miller, S.I. ( 1996 ) Transcriptional activation of Salmonella typhimurium invasion genes by a member of the phosphorylated response-regulator superfamily. Mol Microbiol 22: 715 – 727.en_US
dc.identifier.citedreferenceKim, S.K., and Kaiser, D. ( 1990 ) Cell alignment required in differentiation of Myxococcus xanthus. Science 249: 926 – 928.en_US
dc.identifier.citedreferenceKinscherf, T.G., and Willis, D.K. ( 1999 ) Swarming by Pseudomonas syringae B728a requires gacS ( lemA ) and gacA but not the acyl-homoserine lactone biosynthetic gene ahlI. J Bacteriol 181: 4133 – 4136.en_US
dc.identifier.citedreferenceKirby, J.E., Vogel, J.P., Andrews, H.L., and Isberg, R.R. ( 1998 ) Evidence of pore-forming ability by Legionella pneumophila. Mol Microbiol 27: 323 – 336.en_US
dc.identifier.citedreferenceLaville, J., Voisard, C., Keel, C., Maurhofer, M., Defago, G., and Haas, D. ( 1992 ) Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc Natl Acad Sci USA 89: 1562 – 1566.en_US
dc.identifier.citedreferenceLiu, Y., Cui, Y., Mukherjee, A., and Chatterjee, A.K. ( 1998 ) Characterization of a novel RNA regulator of Erwinia carotovora ssp. carotovora that controls production of extracellular enzymes and secondary metabolites. Mol Microbiol 29: 219 – 234.en_US
dc.identifier.citedreferenceMerriam, J.J., Mathur, R., Maxfield-Boumil, R., and Isberg, R.R. ( 1997 ) Analysis of the Legionella pneumophila fliI gene: intracellular growth of a defined mutant defective for flagellum biosynthesis. Infect Immun 65: 2497 – 2501.en_US
dc.identifier.citedreferenceMirel, D.B., Lustre, V.M., and Chamberlin, M.J. ( 1992 ) An operon of Bacillus subtilis motility genes transcribed by the sigma D form of RNA polymerase. J Bacteriol 174: 4197 – 4204.en_US
dc.identifier.citedreferenceMoolenaar, G.F., van Sluis, C.A., Backendorf, C., and van de Putte, P. ( 1987 ) Regulation of the Escherichia coli excision repair gene uvrC. Overlap between the uvrC structural gene and the region coding for a 24 kD protein. Nucleic Acids Res 15: 4273 – 4289.en_US
dc.identifier.citedreferenceMukhopadhyay, S., Audia, J.P., Roy, R.N., and Schellhorn, H.E. ( 2000 ) Transcriptional induction of the conserved alternative sigma factor RpoS in Escherichia coli is dependent on BarA, a probable two-component regulator. Mol Microbiol 37: 371 – 381.en_US
dc.identifier.citedreferenceOgawa, M., Fujitani, S., Mao, X., Inouye, S., and Komano, T. ( 1996 ) FruA, a putative transcription factor essential for the development of Myxococcus xanthus. Mol Microbiol 22: 757 – 767.en_US
dc.identifier.citedreferenceParkins, M.D., Ceri, H., and Storey, D.G. ( 2001 ) Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol 40: 1215 – 1226.en_US
dc.identifier.citedreferencePruckler, J.M., Benson, R.F., Moyenuddin, M., Martin, W.T., and Fields, B.S. ( 1995 ) Association of flagellum expression and intracellular growth of Legionella pneumophila. Infect Immun 63: 4928 – 4932.en_US
dc.identifier.citedreferenceRahme, L.G., Stevens, E.J., Wolfort, S.F., Shao, J., Tompkins, R.G., and Ausubel, F.M. ( 1995 ) Common virulence factors for bacterial pathogenicity in plants and animals. Science 268: 1899 – 1902.en_US
dc.identifier.citedreferenceReimmann, C., Beyeler, M., Latifi, A., Winteler, H., Foglino, M., Lazdunski, A., and Haas, D. ( 1997 ) The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N -butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide and lipase. Mol Microbiol 24: 309 – 319.en_US
dc.identifier.citedreferenceRich, J.J., Kinscherf, T.G., Kitten, T., and Willis, D.K. ( 1994 ) Genetic evidence that the gacA gene encodes the cognate response regulator for the lemA sensor in Pseudomonas syringae. J Bacteriol 176: 7468 – 7475.en_US
dc.identifier.citedreferenceRogers, J., and Keevil, C.W. ( 1992 ) Immunogold and fluorescein immunolabelling of Legionella pneumophila within an aquatic biofilm visualized by using episcopic differential interference contrast microscopy. Appl Environ Microbiol 58: 2326 – 2330.en_US
dc.identifier.citedreferenceRogers, J., Dowsett, A.B., Dennis, P.J., Lee, J.V., and Keevil, C.W. ( 1994 ) Influence of temperature and plumbing material selection on biofilm formation and growth of Legionella pneumophila in a model potable water system containing complex microbial flora. Appl Environ Microbiol 60: 1585 – 1592.en_US
dc.identifier.citedreferenceRowbotham, T.J. ( 1980 ) Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol 33: 1179 – 1183.en_US
dc.identifier.citedreferenceRubin, E.J., Akerley, B.J., Novik, V.N., Lampe, D.J., Husson, R.N., and Mekalanos, J.J. ( 1999 ) In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci USA 96: 1645 – 1650.en_US
dc.identifier.citedreferenceSadosky, A.B., Wiater, L.A., and Shuman, H.A. ( 1993 ) Identification of Legionella pneumophila genes required for growth within and killing of human macrophages. Infect Immun 61: 5361 – 5373.en_US
dc.identifier.citedreferenceSchmiel, D.H., Young, G.M., and Miller, V.L. ( 2000 ) The Yersinia enterocolitica phospholipase gene yplA is part of the flagellar regulon. J Bacteriol 182: 2314 – 2320.en_US
dc.identifier.citedreferenceShah, D.S., and Sockett, R.E. ( 1995 ) Analysis of the motA flagellar motor gene from Rhodobacter sphaeroides, a bacterium with a unidirectional, stop-start flagellum. Mol Microbiol 17: 961 – 969.en_US
dc.identifier.citedreferenceStone, B.J., and Abu Kwaik, Y. ( 1999 ) Natural competence for DNA transformation by Legionella pneumophila and its association with expression of type IV pili. J Bacteriol 181: 1395 – 1402.en_US
dc.identifier.citedreferenceSturgill-Koszycki, S., and Swanson, M.S. ( 2000 ) Legionella pneumophila replication vacuoles mature into acidic, endocytic organelles. J Exp Med 192: 1261 – 1272.en_US
dc.identifier.citedreferenceSwanson, M.S., and Hammer, B.K. ( 2000 ) Legionella pneumophila pathogenesis: a fateful journey from amoebae to macrophages. Annu Rev Microbiol 54: 567 – 613.en_US
dc.identifier.citedreferenceTan, M.W., Rahme, L.G., Sternberg, J.A., Tompkins, R.G., and Ausubel, F.M. ( 1999 ) Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci USA 96: 2408 – 2413.en_US
dc.identifier.citedreferenceTurco, S.J., and Descoteaux, A. ( 1992 ) The lipophosphoglycan of Leishmania parasites. Annu Rev Microbiol 46: 65 – 94.en_US
dc.identifier.citedreferenceVogel, J.P., Roy, C., and Isberg, R.R. ( 1996 ) Use of salt to isolate Legionella pneumophila mutants unable to replicate in macrophages. Ann NY Acad Sci 797: 271 – 272.en_US
dc.identifier.citedreferenceWhistler, C.A., Corbell, N.A., Sarniguet, A., Ream, W., and Loper, J.E. ( 1998 ) The two-component regulators GacS and GacA influence accumulation of the stationary-phase sigma factor sigma S and the stress response in Pseudomonas fluorescens Pf-5. J Bacteriol 180: 6635 – 6641.en_US
dc.identifier.citedreferenceWillis, D.K., Hrabak, E.M., Rich, J.J., Barta, T.M., Lindow, S.E., and Panopoulos, N.J. ( 1990 ) Isolation and characterization of a Pseudomonas syringae pv. syringae mutant deficient in lesion formation on bean. Mol Plant–Microbe Interact 3: 149 – 156.en_US
dc.identifier.citedreferenceWong, S.M., Carroll, P.A., Rahme, L.G., Ausubel, F.M., and Calderwood, S.B. ( 1998 ) Modulation of expression of the ToxR regulon in Vibrio cholerae by a member of the two-component family of response regulators. Infect Immun 66: 5854 – 5861.en_US
dc.identifier.citedreferenceYamaguchi, S., Fujita, H., Ishihara, A., Aizawa, S.-I., and Macnab, R.M. ( 1986 ) Subdivision of flagellar genes of Salmonella typhimurium into regions responsible for assembly, rotation and switching. J Bacteriol 166: 187 – 193.en_US
dc.identifier.citedreferenceYoung, G.M., Schmiel, D.H., and Miller, V.L. ( 1999 ) A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc Natl Acad Sci USA 96: 6456 – 6461.en_US
dc.identifier.citedreferenceZhang, J.P., and Normark, S. ( 1996 ) Induction of gene expression in Escherichia coli afer pilus-mediated adherence. Science 273: 1234 – 1236.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.