HIV's evasion of the cellular immune response
dc.contributor.author | Collins, Kathleen L. | en_US |
dc.contributor.author | Baltimore, David | en_US |
dc.date.accessioned | 2010-06-01T22:35:28Z | |
dc.date.available | 2010-06-01T22:35:28Z | |
dc.date.issued | 1999-04 | en_US |
dc.identifier.citation | Collins, Kathleen L.; Baltimore, David (1999). "HIV's evasion of the cellular immune response." Immunological Reviews 168(1): 65-74. <http://hdl.handle.net/2027.42/75570> | en_US |
dc.identifier.issn | 0105-2896 | en_US |
dc.identifier.issn | 1600-065X | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/75570 | |
dc.identifier.uri | http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=10399065&dopt=citation | en_US |
dc.description.abstract | Despite a strong cytotoxic T-lymphocyte (CTL) response directed against viral antigens, untreated individuals infected with the human immunodeficiency virus (HIV-1) develop AIDS, We have found that primary T cells infected with HIV-1 downregulate surface MHC class I antigens and are resistant to lysis by HLA-A2-restricted CTL clones. In contrast, cells infected with an HIV-1 in which the nef gene is disrupted are sensitive to CTLs in an MHC and peptide-specific manner. In primary T cells HLA-A2 antigens are downmodulated more dramatically than total MHC class I antigens, suggesting that nef selectively downmodulates certain MHC class I antigens. In support of this, studies on ceils expressing individual MHC class I alietes have revealed that nef does not downmodulate HLA-C and HLA-E antigens, This selective downmodulation allows Infected cells to maintain resistance to certain natural killer cells that lyse infected cells expressing low levels of MHC class I antigens. Downmodulation of MHC class I HLA-A2 antigens occurs not only in primary T cells, but also in B and astrocytoma cell lines. No effect of other HIV-1 accessory proteins such as vpu and vpr was observed. Thus Nef is a protein that may promote escape of HIV-1 from immune surveillance. | en_US |
dc.format.extent | 4804612 bytes | |
dc.format.extent | 3109 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.publisher | Blackwell Publishing Ltd | en_US |
dc.rights | 1999 Blackwell Munksgaard | en_US |
dc.title | HIV's evasion of the cellular immune response | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Microbiology and Immunology | en_US |
dc.subject.hlbtoplevel | Health Sciences | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Departments of Medicine and Microbiology & Immunology, The University of Michigan, Ann Arbor, Michigan, USA. | en_US |
dc.contributor.affiliationother | California Institute of Technology, Pasadena, California, USA. | en_US |
dc.identifier.pmid | 10399065 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/75570/1/j.1600-065X.1999.tb01283.x.pdf | |
dc.identifier.doi | 10.1111/j.1600-065X.1999.tb01283.x | en_US |
dc.identifier.source | Immunological Reviews | en_US |
dc.identifier.citedreference | Borrow P, Lewicki H, Halin B, Shaw G, Oldstone M. 1994. Virus-specific CD8 + cytotoxic-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J Virol 1998; 68: 6103 – 6110. | en_US |
dc.identifier.citedreference | Koup R et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol 1 1994; 68: 4650 – 4655. | en_US |
dc.identifier.citedreference | Mellors, JW, Rinaldo, C, Gupta P, White RM, Todd JA, Kingsley LA. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 1996; 272: 1167 – 1170. | en_US |
dc.identifier.citedreference | Saksela K, Stevens C, Rubinstein P, Baltimore D. Human immunodeficiency virus type 1 mRNA expression in peripheral blood cells predicts disease progression independently of the numbers of CD4 + lymphocytes. Proc Natl Acad Sci USA 1994; 3: 1104 – 1108. | en_US |
dc.identifier.citedreference | Saksela K, Stevens C, Rubinstein P, Taylor P, Baltimore D. HIV-1 Messenger RNA in peripheral blood mononuclear cells as an early marker of risk for progression to AIDS. Ann Intern Med 1995; 123: 641 – 648. | en_US |
dc.identifier.citedreference | Feinberg M, McLean A. AIDS: decline and fall of immune surveillance. Curr Biol 1997; 3: R136 – R140. | en_US |
dc.identifier.citedreference | Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M. Rapid turnover of plasma virions and lymphocytes in HIV-1 infection. Nature 1995; 373: 123 – 126. | en_US |
dc.identifier.citedreference | Wei X, et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 1997; 373: 117 – 122. | en_US |
dc.identifier.citedreference | Ohnimus H, Heinkelein M, Jassoy C. Apoptotic cell death upon contact of CD4 + T lymphocytes with HIV glycoprotein-expressing cells is mediated by caspases but bypasses CD9 S (Fas/Apo-1) and TNF receptor 1. J Immunol 1997; 159: 5246 – 5252. | en_US |
dc.identifier.citedreference | Oyaiizu N, McCloskey T, Coronesi M, Chirmule N, Kalyanaraman V, Pahwa S. Accelerated apoptosis in peripheral blood mononuclear cells (PBMCs) from human immunodeficiency virus type-1 infected patients and in CD4 cross-linked PBMCs from normal individuals. Blood 1993; 82: 3392 – 3400. | en_US |
dc.identifier.citedreference | Groux H, Torpier G, Monte D, Mouton Y, Capron A, Ameisen J. Activation-induced death by apoptosis in CD4 + T cells from human immunodeficiency virus-infected asymptomatic individuals. J Exp Med 1992; 175: 331 – 340. | en_US |
dc.identifier.citedreference | Berndt C, Mopps B, Angermuller S, Gierschik P, Krammer P. CXCR4 and CD4 mediate a rapid and CD95-independent cell death in CD4 + T cells. Proc Natl Acad Sci USA 1998; 95: 12556 – 12561. | en_US |
dc.identifier.citedreference | Meyaard I, Otto S, Jonker R, Mijnster M, Keet R, Miedema F. Programmed death of T cells in HIV-1 infection. Science 1992; 257: 217 – 219. | en_US |
dc.identifier.citedreference | Gandhi R, Oien B, Straus S, Dale J, Lenardo J. Baltimore D, HIV-1 directly kils CD4 + T cells by fas-independent mechanism. J Exp Med 1998; 187: 1113 – 1122. | en_US |
dc.identifier.citedreference | Finzi D, Siliciano R. Viral dynamics in HIV-1 infection. Cell 1998; 93: 665 – 671. | en_US |
dc.identifier.citedreference | Ogg G, et al. Quantitation of HIV-1 -specific cytotoxic T lymphocytes and plasma load of viral RNA. Science 1998; 279: 2103 – 2106. | en_US |
dc.identifier.citedreference | Philips R, et al. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 1991; 354: 453 – 459. | en_US |
dc.identifier.citedreference | Borrow P et al. Antiviral pressure exerted by HiV-1 -specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat Med 1997; 3: 205 – 211. | en_US |
dc.identifier.citedreference | Goulder P, et al. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat Med 1997; 3: 212 – 217. | en_US |
dc.identifier.citedreference | Medzhitov R, Janeway C. Innate immunity: the virtues of a nonclonal system of recognition. Cell 1997; 91: 295 – 298. | en_US |
dc.identifier.citedreference | Albert M, Sauter B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic ceils and induce class I–restricted CTLs. Nature 1998; 392: 86 – 89. | en_US |
dc.identifier.citedreference | Jondal M, Schirmbeck R, Reimann J. MHC class I-restricted CTL responses to exogenous antigens. Immunity 1996; 5: 295 – 302. | en_US |
dc.identifier.citedreference | Berke G. The CTLs kiss of death. Cell 1995; 81: 9 – 12. | en_US |
dc.identifier.citedreference | Walker C, Dewey J, Stites D, Levy J. CD8 + lymphocytes can control HIV infection in viiro by suppressing virus replication. Science 1986; 234: 1563 – 66. | en_US |
dc.identifier.citedreference | Yang O, et al. Efficient lysis of human immunodeficiency virus type 1 -infected cells by cytotoxic T lymphocytes. J Virol 1996; 70: 5799 – 5806. | en_US |
dc.identifier.citedreference | Wagner L, et al. Β-chemokines are released from HIV-1 -specific cytolytic T-cell granules complexed to proteoglycans. Nature 1998; 391: 908 – 911. | en_US |
dc.identifier.citedreference | Deacon NJ, et al. Genomic structure of an attenuated quasi species of HIV-I from a blood transfusion donor and recipients. Science 1995; 270: 988 – 991. | en_US |
dc.identifier.citedreference | Kirchoff F, Greenough T, Brettler D, Sullivan J, Desrosiers R. Absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N Engl J Med 1995; 332: 228 – 232. | en_US |
dc.identifier.citedreference | Kestler H, et al. Importance of the nef gene for maintenance of high virus loads and for development of AIDS Cell 1991; 65: 651 – 652. | en_US |
dc.identifier.citedreference | Saksela K, Cheng G, Baltimore D. Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of src kinases and are required for the enhanced growth of Nef + viruses but not for dowiiregulation of CD4. EMBO J 1995; 14: 484 – 491. | en_US |
dc.identifier.citedreference | Saksela K. HIV-1 Nef and host cell protein kinases. Front Biosci 1997; 2: 606 – 618. | en_US |
dc.identifier.citedreference | Chen B, Gandhi R, Baltimore D. CD4 down-modulation during infection of human T cells with human immunodeficiency virus type I involves indepenent activities of vpu, env, and nef. J Virol 1996; 70: 6044 – 6053. | en_US |
dc.identifier.citedreference | Collins K, Chen B, Kalams S, Walker B, Baltimore D. HIV-1 Nef protein protects infected primary human cells from killing by cytotoxic T lymphocytes. Nature 1998; 391: 397 – 401. | en_US |
dc.identifier.citedreference | Kerkau T, Schmitt-Landgraf R, Schimpl A, Wecker E. Downregulation of HLA class I antigens in HIV-1 -infected cells. AIDS Res Hum Retroviruses 1989; 5: 613 – 620. | en_US |
dc.identifier.citedreference | Scheppler J, Nicholson J, Swan D, Ahmed-Ansari A, McDougal J. Down-modulation of MHC-I in a CD4 + T cell line, CEM-E5, after HIV-1 infection. J Immunol 1989; 143: 2558 – 2566. | en_US |
dc.identifier.citedreference | Howcroft T, Strebel K, Martin M, Singer D. Repression of MHC class I gene promoter activity by two-exon Tat of HIV. Science 1993; 260: 1320 – 1322. | en_US |
dc.identifier.citedreference | Kerkau T, et al. The human immunodeficiency virus type 1 (HIV-1) Vpu protein interferes with an early step in the biosynthesis of major histocompatibility complex (MHC) class I molecules. J Exp Med 1997; 185: 1295 – 1305. | en_US |
dc.identifier.citedreference | Schwartz O, Mareclial V, le Gall, S, Lemounier F, Heard J. Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat Med 1996; 2: 338 – 342. | en_US |
dc.identifier.citedreference | Tsomides T, Aldovini A, Johnson R, Walker B, Young R, Eisen H. Naturally processed viral peptides recognized by cytotoxic T lymphocytes on cells chronically infected by human immunodeficiency virus type 1. J Exp Med 1994; 180: 1283 – 93. | en_US |
dc.identifier.citedreference | Le Gall, S, et al. Nef interacts with Μ subunit of clathrin adaptor complexes and reveals a cryptic sorting signal in MHC I molecules. Immunity 1998; 8: 483 – 495. | en_US |
dc.identifier.citedreference | Greenberg M, Iafrate A, Skowronski J. The SH3 domain-binding surface and an acidic motif in HIV-1 Nef regulate trafficking of class I MHC complexes. EMBO J 1998; 17: 2777 – 2789. | en_US |
dc.identifier.citedreference | McCutcheon J, Gumperz J, Smith K, Lutz C, Parham P. Low HLA-C expression at cell surfaces correlates with increased turnover of heavy chain mRNA. J Exp Med 1995; 181: 2085 – 2095. | en_US |
dc.identifier.citedreference | Zemmour J. Inefficient assembly limits transport and cell surface expression of HLA-Cw4 molecules in CIR. Tissue Antigens 1996; 48: 651 – 661. | en_US |
dc.identifier.citedreference | Neefjes J, Ploegh H. Allele and locus-specific differences in cell surface expression and the association of HLA class I heavy chain with Β2–microglobulin: differential effects of inhibition of glycosylation on class I subunit association. Eur J Immunol 1988; 18: 801 – 810. | en_US |
dc.identifier.citedreference | Neisig A, Melief C, Neefjes J. Reduced cell surface expression of HLA-C molecules correlates with restricted peptide binding and stable TAP interaction. J Immunol 1998; 160: 171 – 179. | en_US |
dc.identifier.citedreference | Lanier L. Follow the leader: NK cell receptors for classical and nonclassical MHC class 1. Cell 1998; 92: 705 – 707. | en_US |
dc.identifier.citedreference | Wilson CC, et al. Overlapping epitopes in human immunodeficiency virus type I gp120 presented by HLA A, B, and C molecules: effects of viral variation on cytotoxic T-lymphocyte recognition. J Virol 1997; 71: 1256 – 1264. | en_US |
dc.identifier.citedreference | Johnson RP, Trocha A, Buchanan TM, Walker BD. Recognition of a highly conserved region of human immunodeficiency virus type I gp120 by an HLA-Cw4-restricted cytotoxic T-lymphocyte clone. J Virol 1993; 67: 438 – 45. | en_US |
dc.identifier.citedreference | Littaua RA, et al. An HLA-C-restricted CD8 + cytotoxic T-lymphocyte clone recognizes a highly conserved epitope on human immunodeficiency virus type 1 gag. J Virol 1991; 65: 4051 – 4056. | en_US |
dc.identifier.citedreference | Houchins JP, Lanier LL, Niemi EC, Phillips JH, Ryan JC. Natural killer cell cytolytic activity is inhibited by NKG2-A and activated by NKG2-C. J Immunol 1997; 158: 3603 – 3609. | en_US |
dc.identifier.citedreference | Orenstein J, Fox C, Wahl S. Macrophages as a source of HIV during opportunistic infections. Science 1997; 276: 1857 – 1861. | en_US |
dc.identifier.citedreference | Greenberg M, Bronson S, Lock M, Neumann M, Pavlakis G, Skowronski J. Co-localization of HIV-1 Nef with the AP-2 adaptor protein complex correlates with Nef-induced CD4 down-regulation. EMBO J 1997; 16: 6964 – 6976. | en_US |
dc.identifier.citedreference | Liu L, et al. Binding of HIV-1 Nef to a novel thioesterase enzyme correlates with Nef-mediated CD4 down-regulation. J Biol Chem 1997; 272: 13779 – 13785. | en_US |
dc.identifier.citedreference | Piguet V, Chen Y, Mangasarian A, Foti M, Carpentier J, Trono D. Mechanism of Nef-induced CD4 endocytosis: Nef connects CD4 with the Μ chain of adaptor complexes. EMBO J 1998; 17: 2472 – 2481. | en_US |
dc.identifier.citedreference | Lu X, Yu H, Liu S, Brodsky F, Peterlin B. Interactions between HIV-1 Nef and vacuolar ATPase facilitate the internalization of CD4. Immunity 1998; 8: 647 – 656. | en_US |
dc.identifier.citedreference | Klenerman P, Zinkernagel R. Original antigenic sin impairs cytotoxic T lymphocyte responses to viruses bearing variant epitopes. Nature 1998; 394: 482 – 485. | en_US |
dc.identifier.citedreference | Klenerman P Meier U, Phillips R, McMichael A. The effects of natural altered peptide ligands on the whole blood cytotoxic T lymphocyte response to human immunodeficiency virus. Eur J Immunol 1995; 25: 1927 – 1931. | en_US |
dc.identifier.citedreference | McAdam S, et al. Immunogenic HIV variant peptides that bind to HLA-B8 can fail to stimulate cytotoxic T lymphocyte responses. J Immunol 1995; 155: 2729 – 2736. | en_US |
dc.identifier.citedreference | Meier U, et al. Cytotoxic T lymphocyte lysis inhibited by viable HIV mutants. Science 1995; 270: 1360 – 1362. | en_US |
dc.identifier.citedreference | Klenerman P, et al. Cytotoxic T-cell activity antagonized by naturally occurring HIV-1 Gag variants. Nature 1994; 369: 403 – 407. | en_US |
dc.identifier.citedreference | Xu X, et al. Evasion of CTL responses by Nef-dependent induction of Fas ligand (CD95L) expression on simian immunodeficiency virus-infected cells. J Exp Med 1997; 186: 1 – 10. | en_US |
dc.identifier.citedreference | Herbein G, et al. Apoptosis of CD8 + T cells is mediated by macrophages through interaction of HIV gp120 with chemokine receptor CXCR4. Nature 1998; 395: 189 – 194. | en_US |
dc.identifier.citedreference | Rosenberg E, et al. Vigorous HIV-1 specific CD4 + T cell responses associated with control of viremia. Science 1997; 278: 1447 – 1450. | en_US |
dc.identifier.citedreference | Trimble L, Lieberman J. Circulating CD8 T lymphocytes in human immunodeficiency virus-infected individuals have impaired function and downmodulate CD3 zeta, the signaling chain of the T-cell receptor complex. Blood 1998; 91: 585 – 594. | en_US |
dc.identifier.citedreference | Huang Y, Zhang L, Ho D. Characterization of nef sequences in long-term survivors of human immunodeficiency virus type I infection. J Virol 1995; 69: 93 – 100. | en_US |
dc.identifier.citedreference | Huang Y, Zhang L, Ho D. Biological characterization of nef in long-term survivors of human immunodeficiency virus type 1 infection. J Virol 1995; 69: 8142 – 8146. | en_US |
dc.identifier.citedreference | Ponten J, Macintyre E. Long term culture of normal and neoplastic human glia. Acta Pathol Microbiol Scand 1968; 74: 465 – 486. | en_US |
dc.identifier.citedreference | Hopkins N. High titers of retrovirus (vesicular stomatitis virus) pseudotypes, at last. Proc Natl Acad Sci USA 1993; 90: 8759 – 8760. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.