Show simple item record

Multifunctional host defense peptides: functional and mechanistic insights from NMR structures of potent antimicrobial peptides

dc.contributor.authorBhattacharjya, Surajiten_US
dc.contributor.authorRamamoorthy, Ayyalusamyen_US
dc.date.accessioned2010-06-01T22:37:16Z
dc.date.available2010-06-01T22:37:16Z
dc.date.issued2009-11en_US
dc.identifier.citationBhattacharjya, Surajit; Ramamoorthy, Ayyalusamy (2009). "Multifunctional host defense peptides: functional and mechanistic insights from NMR structures of potent antimicrobial peptides." FEBS Journal 276(22): 6465-6473. <http://hdl.handle.net/2027.42/75597>en_US
dc.identifier.issn1742-464Xen_US
dc.identifier.issn1742-4658en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75597
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19817858&dopt=citationen_US
dc.format.extent454600 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2009 Federation of European Biochemical Societiesen_US
dc.subject.otherAntimicrobial Peptideen_US
dc.subject.otherLipopolysaccharide (LPS)en_US
dc.subject.otherMagaininen_US
dc.subject.otherMembraneen_US
dc.subject.otherMSIen_US
dc.subject.otherNMRen_US
dc.subject.otherStructureen_US
dc.titleMultifunctional host defense peptides: functional and mechanistic insights from NMR structures of potent antimicrobial peptidesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum2  Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationother1  Biomolecular NMR and Drug Discovery Laboratory, School of Biological Sciences, Division of Structural and Computational Biology, Nanyang Technological University, Singaporeen_US
dc.identifier.pmid19817858en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75597/1/j.1742-4658.2009.07357.x.pdf
dc.identifier.doi10.1111/j.1742-4658.2009.07357.xen_US
dc.identifier.sourceFEBS Journalen_US
dc.identifier.citedreferenceVerhoef J ( 2003 ) Antibiotic resistance: the pandemic. Adv Exp Med Biol 531, 301 – 313.en_US
dc.identifier.citedreferenceHancock REW ( 1997 ) Peptide antibiotics. Lancet 349, 418 – 422.en_US
dc.identifier.citedreferenceOverbye KM & Barrett JF ( 2005 ) Antibiotics: where did we go wrong. Drug Discov Today 10, 45 – 52.en_US
dc.identifier.citedreferenceLevy SB & Marshall B ( 2004 ) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med Suppl 10, S122 – S129.en_US
dc.identifier.citedreferenceWalsh FM & Amyes SGB ( 2004 ) Microbiology and drug resistance mechanisms of fully resistant pathogens. Curr Opin Microbiol 7, 439 – 444.en_US
dc.identifier.citedreferenceWeinstein RA ( 2001 ) Controlling antimicrobial resistance in hospitals: infection control and use of antibiotics. Emerg Infect Dis 7, 188 – 192.en_US
dc.identifier.citedreferenceHoskin DW & Ramamoorthy A ( 2008 ) Studies on anticancer activities of antimicrobial peptides. BBA Biomembr 1778, 357 – 375.en_US
dc.identifier.citedreferenceDhople V, Krukemeyer A & Ramamoorthy A ( 2006 ) The human beta-defensin-3, an antibacterial peptide with multiple biological functions. Biochim Biophys Acta 1758, 1499 – 1512.en_US
dc.identifier.citedreferenceHancock REW ( 2001 ) Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 1, 156 – 164.en_US
dc.identifier.citedreferenceZasloff M ( 2002 ) Antimicrobial peptides of multicellular organisms. Nature 415, 389 – 395.en_US
dc.identifier.citedreferenceOppenheim JJ, Biragyn A, Kwak LW & Yang D ( 2003 ) Roles of antimicrobial peptides such as defensins in innate and adaptive immunity. Ann Rheum Dis 62, 17 – 21.en_US
dc.identifier.citedreferenceDÜrr UH, Sudheendra US & Ramamoorthy A ( 2006 ) LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta 1758, 1408 – 1425.en_US
dc.identifier.citedreferenceEpand RM & Vogel HJ ( 1999 ) Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta 1462, 11 – 28.en_US
dc.identifier.citedreferenceSelsted ME & Ouellette AJ ( 2005 ) Mammalian defensins in the antimicrobial immune response. Nat Immunol 6, 551 – 557.en_US
dc.identifier.citedreferenceChan DI, Prenner EJ & Vogel HJ ( 2006 ) Tryptophan and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta 1758, 1184 – 1202.en_US
dc.identifier.citedreferenceTossi A, Sandri L & Giangaspero A ( 2000 ) Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 55, 4 – 30.en_US
dc.identifier.citedreferenceZelezetsky I & Tossi A ( 2006 ) Alpha-helical antimicrobial peptides – using a sequence template to guide structure–activity relationship studies. Biochim Biophys Acta 1758, 1436 – 1449.en_US
dc.identifier.citedreferencePorcelli F, Verardi R, Shi L, Henzler-Wildman KA, Ramamoorthy A & Veglia G ( 2008 ) NMR structure of the cathelicidin-derived human antimicrobial peptide LL-37 in dodecylphosphocholine micelles. Biochemistry 47, 5565 – 5572.en_US
dc.identifier.citedreferencePowers JP, Tan A, Ramamoorthy A & Hancock RE ( 2005 ) Solution structure and interaction of the antimicrobial polyphemusins with lipid membranes. Biochemistry 44, 15504 – 15513.en_US
dc.identifier.citedreferencePorcelli F, Buck B, Lee DK, Hallock KJ, Ramamoorthy A & Veglia G ( 2004 ) Structure and orientation of pardaxin determined by NMR experiments in model membranes. J Biol Chem 279, 45815 – 45823.en_US
dc.identifier.citedreferenceRamamoorthy A ( 2009 ) Beyond NMR spectra of antimicrobial peptides: dynamical images at atomic resolution and functional insights. Solid State NMR Spectrosc 35, 201 – 207.en_US
dc.identifier.citedreferenceRamamoorthy A, Lee DK, Santos JS & Henzler-Wildman KA ( 2008 ) Nitrogen-14 solid-state NMR spectroscopy of aligned phospholipid bilayers to probe peptide–lipid interaction and oligomerization of membrane associated peptides. J Am Chem Soc 130, 11023 – 11029.en_US
dc.identifier.citedreferencePorcelli F, Buck-Koehntop B, Thennarasu S, Ramamoorthy A & Veglia G ( 2006 ) Structures of the dimeric and monomeric variants of magainin antimicrobial peptides (MSI-78 and MSI-594) in micelles and bilayers by NMR spectroscopy. Biochemistry 45, 5793 – 5799.en_US
dc.identifier.citedreferenceSaravanan R, Bhunia A & Bhattacharjya S. ( 2009 ) Micelle-bound structures and dynamics of the hinge deleted analog of melittin and its diastereomer: implications in cell selective lysis by d-amino acid containing antimicrobial peptides. BBA Biomembr doi :.en_US
dc.identifier.citedreferenceGottler LM, Lee HY, Shelburne CE, Ramamoorthy A & Marsh ENG ( 2008 ) Using fluorous amino acids to modulate the biological activity of an antimicrobial peptide. ChemBioChem 9, 370 – 373.en_US
dc.identifier.citedreferenceGottler LM, de la Salud Bea R, Shelburne CE, Ramamoorthy A & Marsh EN ( 2008 ) Using fluorous amino acids to probe the effects of changing hydrophobicity on the physical and biological properties of the beta-hairpin antimicrobial peptide protegrin-1. Biochemistry 47, 9243 – 9250.en_US
dc.identifier.citedreferenceHaney EF & Vogel HJ ( 2009 ) NMR of antimicrobial peptides. Annu Rep NMR Spectrosc 65, 1 – 51.en_US
dc.identifier.citedreferenceHaney EF, Hunter HN, Matsuzaki K & Vogel HJ ( 2009 ) Solution NMR studies of amphibian antimicrobial peptides: linking structure to function? BBA Biomembr 1788, 1639 – 1655.en_US
dc.identifier.citedreferenceHallock KJ, Henzler Wildman KA, Lee DK & Ramamoorthy A. ( 2002 ) Sublimable solids can be used to mechanically align lipid bilayers for solid-state NMR studies. Biophys J 82, 2499 – 2503.en_US
dc.identifier.citedreferenceWu CH, Ramamoorthy A & Opella SJ ( 1994 ) High resolution heteronuclear dipolar solid-state NMR spectroscopy. J Magn Reson 109, 270 – 272.en_US
dc.identifier.citedreferenceRamamoorthy A, Wei Y & Lee DK ( 2004 ) PISEMA solid-state NMR spectroscopy. Ann Rep NMR Spectrosc 52, 1 – 52.en_US
dc.identifier.citedreferenceHallock KJ, Lee DK & Ramamoorthy A ( 2003 ) MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophys J 84, 3052 – 3060.en_US
dc.identifier.citedreferenceRamamoorthy A, Thennarasu S, Lee DK, Tan A & Maloy L ( 2006 ) Solid-state NMR investigation of the membrane-disrupting mechanism of antimicrobial peptides MSI-78 and MSI-594 derived from magainin 2 and melittin. Biophys J 91, 206 – 216.en_US
dc.identifier.citedreferenceGullion T & Schaefer J ( 1989 ) Rotational-echo double-resonance NMR. J Magn Reson 81, 196 – 200.en_US
dc.identifier.citedreferenceHenzler Wildman KA, Lee D-K & Ramamoorthy A. ( 2003 ) Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry 42, 6545 – 6558.en_US
dc.identifier.citedreferenceHenzler Wildman KA, Martinez GV, Brown MF & Ramamoorthy A ( 2004 ) Perturbation of the hydrophobic core of lipid bilayers by the human antimicrobial peptide LL-37. Biochemistry 43, 8459 – 8469.en_US
dc.identifier.citedreferenceGlaser RW, Sachse C, DÜrr UHN, Wadhwani P, Afonin S, Strandberg E & Ulrich AS ( 2005 ) Concentration-dependent realignment of the antimicrobial peptide PGLa in lipid membranes observed by solid-state 19 F-NMR. Biophys J 88, 3392 – 3397.en_US
dc.identifier.citedreferenceSalnikov ES, Friedrich H, Li X, Bertani P, Reissmann S, Hertweck C, O’Neil JDJ, Raap J & Bechinger B ( 2009 ) Structure and alignment of the membrane-associated peptaibols ampullosporin A and alamethicin by oriented 15 N and 31 P solid-state NMR spectroscopy. Biophys J 96, 86 – 100.en_US
dc.identifier.citedreferenceHallock KJ, Lee DK, Omnaas J, Mosberg HI & Ramamoorthy A ( 2002 ) Membrane composition determines pardaxin’s mechanism of lipid bilayer disruption. Biophys J 83, 1004 – 1013.en_US
dc.identifier.citedreferenceThennarasu S, Lee DK, Tan A, Kari UP & Ramamoorthy A ( 2005 ) Antimicrobial activity and membrane selective interactions of a synthetic lipopeptide MSI-843. Biochim Biophys Acta 1711, 49 – 58.en_US
dc.identifier.citedreferenceBechinger B & Lohner K ( 2006 ) Detergent-like actions of linear amphipathic cationic antimicrobial peptides. BBA Biomembr 1758, 1529 – 1539.en_US
dc.identifier.citedreferenceNikaido H ( 1994 ) Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264, 382 – 388.en_US
dc.identifier.citedreferenceRietschel ET, Kirikae T, Schade UF, Ulmer AJ, Holst O, Brade H, Schmidt G, Mamat U, Grimmecke H-D, Kusumoto S, et al. ( 1993 ) The chemical structure of bacterial endotoxin in relation to bioactivity. Immunobiology 187, 169 – 190.en_US
dc.identifier.citedreferenceSynder D & McIntosh TJ ( 2000 ) The lipopolysaccharide barrier: correlation of antibiotic susceptibility with antibiotic permeability and fluorescent probe binding kinetics. Biochemistry 39, 11777 – 11787.en_US
dc.identifier.citedreferenceRaetz CR & Whitfield C ( 2002 ) Lipopolysaccharide endotoxins. Annu Rev Biochem 71, 635 – 700.en_US
dc.identifier.citedreferenceRosenfeld Y & Shai Y ( 2006 ) Lipopolysaccharide (endotoxin)–host defense antibacterial peptide interactions: role in bacterial resistance and prevention of sepsis. Biochim Biophys Acta 1758, 1513 – 1522.en_US
dc.identifier.citedreferenceMangoni ML, Epand RF, Rosenfeld Y, Peleg A, Barra D, Epand RM & Shai Y ( 2008 ) Lipopolysaccharide, a key molecule involved in the synergism between temporins in inhibiting bacterial growth and in endotoxin neutralization. J Biol Chem 283, 22907 – 22917.en_US
dc.identifier.citedreferenceHancock RE ( 1984 ) Alterations in outer membrane permeability. Annu Rev Microbiol 38, 237 – 264.en_US
dc.identifier.citedreferenceRosenfeld Y, Papo N & Shai Y ( 2006 ) Endotoxin (lipopolysaccharide) neutralization by innate immunity host-defense peptides, peptide properties and plausible modes of action. J Biol Chem 281, 1636 – 1643.en_US
dc.identifier.citedreferenceCohen J ( 2002 ) The immunopathogenesis of sepsis. Nature 420, 885 – 891.en_US
dc.identifier.citedreferenceHardaway RM ( 2000 ) A review of septic shock. Am Surg 66, 22 – 29.en_US
dc.identifier.citedreferenceBhattacharjya S, Domadia PN, Bhunia A, Malladi S & David SA ( 2007 ) High-resolution solution structure of a designed peptide bound to lipopolysaccharide: transferred nuclear Overhauser effects, micelle selectivity, and anti-endotoxic activity. Biochemistry 46, 5864 – 5874.en_US
dc.identifier.citedreferenceBhunia A, Domadia PN & Bhattacharjya S ( 2007 ) Structural and thermodynamic analyses of the interaction between melittin and lipopolysaccharide. Biochim Biophys Acta 1768, 3282 – 3291.en_US
dc.identifier.citedreferenceBhunia A, Chua GL, Domadia PN, Warshakoon H, Cromer JR, David SA & Bhattacharjya S ( 2008 ) Interactions of a designed peptide with lipopolysaccharide: bound conformation and anti-endotoxic activity. Biochem Biophys Res Commun 369, 853 – 857.en_US
dc.identifier.citedreferenceBhunia A, Mohanram H & Bhattacharjya S ( 2009 ) Lipopolysaccharide bound structures of the active fragments of fowlicidin-1, a cathelicidin family of antimicrobial and antiendotoxic peptide from chicken, determined by transferred nuclear Overhauser effect spectroscopy. Biopolymers 92, 9 – 22.en_US
dc.identifier.citedreferenceBhunia A, Ramamoorthy A & Bhattacharjya S ( 2009 ) Helical hairpin structure of a potent antimicrobial peptide MSI-594 in lipopolysaccharide micelles by NMR spectroscopy. Chem Eur J 15, 2036 – 2040.en_US
dc.identifier.citedreferenceBhunia A, Mohanram H, Domadia PN, Torres J & Bhattacharjya S ( 2009 ) Designed β-boomerang antimicrobial and antiendotoxic peptides: structures and activities in lipopopolysaccharide. J Biol Chem 284, 21991 – 22004.en_US
dc.identifier.citedreferenceBhattacharjya S, David SA, Mathan VI & Balaram P ( 1997 ) Polymyxin B nonapeptide: conformations in water and in lipopolysaccharide-bound state determined by two-dimensional NMR and molecular dynamics. Biopolymers 41, 251 – 265.en_US
dc.identifier.citedreferencePristovsek P & Kidric J ( 1999 ) Solution structure of polymyxins B and E and effect of binding to lipopolysaccharide: an NMR and molecular modeling study. J Med Chem 42, 4604 – 4613.en_US
dc.identifier.citedreferenceJapelj B, Pristovsek P, Majerle A & Jerala R ( 2005 ) Structural origin of endotoxin neutralization and antimicrobial activity of a lactoferrin-based peptide. J Biol Chem 280, 16955 – 16961.en_US
dc.identifier.citedreferencePristovsek P, Feher K, Szilagyi L & Kidric J ( 2005 ) Structure of a synthetic fragment of the LALF protein when bound to lipopolysaccharide. J Med Chem 48, 1666 – 1670.en_US
dc.identifier.citedreferenceSantos NC, Silva AC, Castanho MA, Martins-Silva J & Saldanha C ( 2003 ) Evaluation of lipopolysaccharide aggregation by light scattering spectroscopy. Chembiochem 4, 96 – 100.en_US
dc.identifier.citedreferenceMeyer B & Peters T ( 2003 ) NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed 42, 864 – 890.en_US
dc.identifier.citedreferenceWang W, Sass HJ, ZÄhringer U & Grzesiek S ( 2008 ) Structure and dynamics of 13 C, 15 N-labeled lipopolysaccharides in a membrane mimetic. Angew Chem Int Ed 47, 9870 – 9874.en_US
dc.identifier.citedreferenceAlbright S, Agrawal P & Jain NU ( 2009 ) NMR spectral mapping of lipid A molecular patterns affected by interaction with the innate immune receptor CD14. Biochem Biophys Res Commun 378, 721 – 726.en_US
dc.identifier.citedreferenceMares J, Kumaran S, Gobbo M & Zerbe O ( 2009 ) Interactions of lipopolysaccharide and polymyxin studied by NMR spectroscopy. J Biol Chem 284, 11498 – 11506.en_US
dc.identifier.citedreferenceSanders CR, Hare BJ, Howard KP & Prestegard JH ( 1994 ) Magnetically-oriented phospholipid micelles as a tool for the study of membrane-associated molecules. Prog NMR Spectrosc 26, 421 – 444.en_US
dc.identifier.citedreferenceProsser RS, Evanics F, Kitevski JL & Al-Abdul-Wahid MS ( 2006 ) Current applications of bicelles in NMR studies of membrane-associated amphiphiles and proteins. Biochemistry 45, 8453 – 8465.en_US
dc.identifier.citedreferenceYamamoto K, Soong R & Ramamoorthy A ( 2009 ) A comprehensive analysis of lipid dynamics variation with lipid composition and hydration of bicelles using NMR spectroscopy. Langmuir 25, 7010 – 7018.en_US
dc.identifier.citedreferencePoget SF & Girvin ME ( 2007 ) NMR of membrane proteins in bilayer mimics: small is beautiful, but sometimes bigger is better. Biochim Biophys Acta 1768, 3098 – 3106.en_US
dc.identifier.citedreferenceDÜrr UHN, Yamamoto K, Im S-C, Waskell L & Ramamoorthy A ( 2007 ) Solid-state NMR reveals structural and dynamical properties of a membrane-anchored electron-carrier protein, cytochrome-b5. J Am Chem Soc 129, 6670 – 6671.en_US
dc.identifier.citedreferenceDÜrr UHN, Waskell L & Ramamoorthy A ( 2007 ) The cytochrome P450 and b5 and their reductases – promising targets for structural studies by advanced solid-state NMR spectroscopy. BBA Biomembr 1768, 3235 – 3259.en_US
dc.identifier.citedreferenceDvinskikh S, DÜrr UHN, Yamamoto K & Ramamoorthy A ( 2006 ) A high resolution solid state NMR approach for the structural studies of bicelles. J Am Chem Soc 128, 6326.en_US
dc.identifier.citedreferenceNicolas P ( 2009 ) Multifunctional host defense peptides: Intracellular-targeting antimicrobial peptides. FEBS J 276, doi :.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.