Show simple item record

CD43-independent augmentation of mouse T-cell function by glycoprotein cleaving enzymes

dc.contributor.authorBerger, Scott B.en_US
dc.contributor.authorSadighi Akha, Amir A.en_US
dc.contributor.authorMiller, Richard A.en_US
dc.contributor.authorGarcia, Gonzalo G.en_US
dc.date.accessioned2010-06-01T22:38:48Z
dc.date.available2010-06-01T22:38:48Z
dc.date.issued2006-10en_US
dc.identifier.citationBerger, Scott B.; Sadighi Akha, Amir A.; Miller, Richard A.; Garcia, Gonzalo G. (2006). "CD43-independent augmentation of mouse T-cell function by glycoprotein cleaving enzymes." Immunology 119(2): 178-186. <http://hdl.handle.net/2027.42/75621>en_US
dc.identifier.issn0019-2805en_US
dc.identifier.issn1365-2567en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75621
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16805789&dopt=citationen_US
dc.description.abstractPrevious work has shown that the function of mouse CD4 + T cells can be augmented by an enzyme, O -sialoglycoprotein endopeptidase (OSGE), which cleaves surface CD43, suggesting the idea that the high levels of glycosylated CD43 found on T cells from aged mice may contribute to immune senescence. New results now show that OSGE improves T-cell function even in mice lacking CD43, showing that other glycoproteins must contribute to the OSGE effect on function. Evaluation of other enzymes found two whose ability to stimulate CD4 activation was higher in aged than in young T cells. One of these, PNGase F, is a glycosidase specific for N-linked glycans, and the other, ST-Siase(2,3) from Salmonella typhimurium , is specific for α2,3-linked terminal sialic acid residues. Parallel lectin-binding experiments showed that removal of α2,3-linked sialic acid residues vulnerable to PNGase F and ST-Siase(2,3) was also greater in old than in young T cells. The preferential ability of PNGase F and ST-Siase(2,3) to improve the function of T cells from aged mice may involve cleavage of glycoproteins containing α2,3-linked sialic acid residues on N-linked or O-linked glycans or both.en_US
dc.format.extent740317 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2006 Blackwell Publishing Ltden_US
dc.subject.otherAgeingen_US
dc.subject.otherImmunosenescenceen_US
dc.subject.otherSignal Transductionen_US
dc.subject.otherCellular Activationen_US
dc.subject.otherGlycosylationen_US
dc.titleCD43-independent augmentation of mouse T-cell function by glycoprotein cleaving enzymesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumGeriatrics Center, University of Michigan Medical School, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Biological Chemistryen_US
dc.contributor.affiliationotherDepartment of Pathologyen_US
dc.contributor.affiliationotherAnn Arbor DVA Medical Center, Ann Arbor, MI, USAen_US
dc.identifier.pmid16805789en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75621/1/j.1365-2567.2006.02419.x.pdf
dc.identifier.doi10.1111/j.1365-2567.2006.02419.xen_US
dc.identifier.sourceImmunologyen_US
dc.identifier.citedreferencePawelec G, Solana R, Remarque E, Mariani E. Impact of aging on innate immunity. J Leukoc Biol 1988; 64: 703 – 12.en_US
dc.identifier.citedreferencePlackett TP, Boehmer ED. Faunce DE, Kovacs EJ. Aging and innate immune cells. J Leukoc Biol 2004; 76: 291 – 9.en_US
dc.identifier.citedreferenceMiller RA, Berger SB, Burke DT, Galecki A, Garcia GG, Harper JM, Sadighi Akha AA. T cells in aging mice: genetic, developmental, and biochemical analyses. Immunol Rev 2005; 205: 94 – 103.en_US
dc.identifier.citedreferenceRiley RL, Blomberg BB, Frasca D. B cells, E2A, and aging. Immunol Rev 2005; 205: 30 – 47.en_US
dc.identifier.citedreferenceSzakal AK, Aydar Y, Balogh P, Tew JG. Molecular interactions of FDCs with B cells in aging. Semin Immunol 2002; 14: 267 – 74.en_US
dc.identifier.citedreferenceGrubeck-Loebenstein B, Wick G. The aging of the immune system. Adv Immunol 2002; 80: 243 – 84.en_US
dc.identifier.citedreferenceNikolich-Zugich J. T cell aging: naive but not young. J Exp Med 2005; 201: 837 – 40.en_US
dc.identifier.citedreferenceAspinall R. Age-related changes in the function of T cells. Microsc Res Techn 2003; 62: 508 – 13.en_US
dc.identifier.citedreferenceTaub DD, Longo DL. Insights into thymic aging and regeneration. Immunol Rev 2005; 205: 72 – 93.en_US
dc.identifier.citedreferenceStoltzner G, Makinodan T. Age dependent decline in proliferation of lymphocytes. Adv Exp Med Biol 1975; 61: 21 – 37.en_US
dc.identifier.citedreferenceHaynes L, Eaton SM. The effect of age on the cognate function of CD4 + T cells. Immunol Rev 2005; 205: 220 – 8.en_US
dc.identifier.citedreferenceGarcia GG, Miller RA. Age-dependent defects in TCR-triggered cytoskeletal rearrangement in CD4 + T cells. J Immunol 2002; 169: 5021 – 7.en_US
dc.identifier.citedreferenceGarcia GG, Miller RA. Age-related defects in CD4 + T cell activation reversed by glycoprotein endopeptidase. Eur J Immunol 2003; 33: 3464 – 72.en_US
dc.identifier.citedreferenceCullinan P, Sperling AI, Burkhardt JK. The distal pole complex: a novel membrane domain distal to the immunological synapse. Immunol Rev 2002; 189: 111 – 22.en_US
dc.identifier.citedreferenceArdman B, Sikorski MA. Staunton DE. CD43 interferes with T-lymphocyte adhesion. Proc Natl Acad Sci USA 1992; 89: 5001 – 5.en_US
dc.identifier.citedreferenceManjunath N, Correa M, Ardman M, Ardman B. Negative regulation of T-cell adhesion and activation by CD43. Nature 1995; 377: 535 – 8.en_US
dc.identifier.citedreferenceManjunath N, Johnson RS, Staunton DE, Ardman, B. Targeted disruption of CD43 gene enhances T lymphocyte adhesion. J Immunol 1993; 151: 1528 – 34.en_US
dc.identifier.citedreferenceBerger SB, Sadighi Akha AA, Miller RA. A Glycoprotein endopeptidase enhances calcium influx and cytokine production by CD4 + T cells of old and young mice. Int Immunol 2005; 17: 983 – 91.en_US
dc.identifier.citedreferenceGarcia GG, Berger SB, Sadighi Akha AA, Miller RA. Age-associated changes in glycosylation of CD43 and CD45 on mouse CD4 T cells. Eur J Immunol 2005; 35: 622 – 31.en_US
dc.identifier.citedreferenceTamir A, Eisenbraun MD, Garcia GG, Miller RA. Age-dependent alterations in the assembly of signal transduction complexes at the site of T cell/APC interaction. J Immunol 2000; 165: 1243 – 51.en_US
dc.identifier.citedreferenceSperling AI, Sedy JR, Manjunath N, Kupfer A, Ardman B, Burkhardt JK. Cutting edge. TCR signaling induces selective exclusion of CD43 from the T cell-antigen-presenting cell contact site. J Immunol 1988; 161: 6459 – 62.en_US
dc.identifier.citedreferenceStockton BM, Manjunath N, Ardman B, von Andrian UH. Negative regulation of T cell homing by CD43. Immunity 1988; 8: 373 – 81.en_US
dc.identifier.citedreferenceWoodman RC, Johnston B, Hickey MJ, Teoh D, Reinhardt P, Poon BY, Kubes P. The Functional paradox of CD43 in leukocyte recruitment: a study using CD43-deficient mice. J Exp Med 1998; 188: 2181 – 6.en_US
dc.identifier.citedreferenceThurman EC, Walker J, Jayaraman S, Manjunath N, Ardman B, Green JM. Regulation of in vitro and in vivo T cell activation by CD43. Int Immunol 1998; 10: 691 – 701.en_US
dc.identifier.citedreferenceOstberg JR, Barth RK, Frelinger JG. The Roman god Janus. A paradigm for the function of CD43. Immunol Today 1998; 19: 546 – 50.en_US
dc.identifier.citedreferenceTong J, Allenspach EJ, Takahashi SM, Mody PD, Park C, Burkhardt JK, Sperling AI. CD43 regulation of T cell activation is not through steric inhibition of T cell–APC interactions but through an intracellular mechanism. J Exp Med 2004; 199: 1277 – 83.en_US
dc.identifier.citedreferenceSperling AI, Green JM, Mosley RL, Smith PL, DiPaolo RJ, Klein JR, Bluestone JA, Thompson CB. CD43 is a murine T cell costimulatory receptor that functions independently of CD28. J Exp Med 1995; 182: 139 – 46.en_US
dc.identifier.citedreferenceOnami TM, Harrington LE, Williams MA et al. Dynamic regulation of T cell immunity by CD43. J Immunol 2002; 168: 6022 – 31.en_US
dc.identifier.citedreferenceKyoizumi S, Ohara T, Kusunoki Y, Hayashi T, Koyama K, Tsuyama N. Expression characteristics and stimulatory functions of CD43 in human CD4 + memory T cells: analysis using a monoclonal antibody to CD43 that has a novel lineage specificity. J Immunol 2004; 172: 7246 – 53.en_US
dc.identifier.citedreferenceCarlow DA, Corbel SY, Ziltener HJ. Absence of CD43 fails to alter T cell development and responsiveness. J Immunol 2001; 166: 256 – 61.en_US
dc.identifier.citedreferenceIwashima M. Kinetic perspectives of T cell antigen receptor signaling. A two-tier model for T cell full activation. Immunol Rev 2003; 191: 196 – 210.en_US
dc.identifier.citedreferenceTrowbridge IS, Thomas ML. CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu Rev Immunol 1994; 12: 85 – 116.en_US
dc.identifier.citedreferenceD'Oro U, Ashwell JD. Cutting edge. The CD45 tyrosine phosphatase is an inhibitor of lck activity in thymocytes. J Immunol 1999; 162: 1879 – 83.en_US
dc.identifier.citedreferenceIrie-Sasaki J, Sasaki T, Matsumoto W et al. CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 2001; 409: 349 – 54.en_US
dc.identifier.citedreferenceDornan S, Sebestyen Z, Gamble J et al. Differential Association of CD45 isoforms with CD4 and CD8 regulates the actions of specific pools of p56lck tyrosine kinase in T cell antigen receptor signal transduction. J Biol Chem 2002; 277: 1912 – 8.en_US
dc.identifier.citedreferenceMcKenney DW, Onodera H, Gorman L, Mimura T, Rothstein DM. Distinct isoforms of the CD45 protein-tyrosine phosphatase differentially regulate interleukin 2 secretion and activation signal pathways involving Vav in T cells. J Biol Chem 1995; 270: 24949 – 54.en_US
dc.identifier.citedreferenceMoody AM, North SJ, Reinhold B et al. Sialic acid capping of CD8beta core 1- O -glycans controls thymocyte-major histocompatibility complex class I interaction. J Biol Chem 2003; 278: 7240 – 6.en_US
dc.identifier.citedreferencePriatel JJ, Chui D, Hiraoka N et al. The ST3Gal-I sialyltransferase controls CD8 + T lymphocyte homeostasis by modulating O -glycan biosynthesis. Immunity 2000; 12: 273 – 83.en_US
dc.identifier.citedreferencePappu BP, Shrikant PA. Alteration of cell surface sialylation regulates antigen-induced naive CD8 + T cell responses. J Immunol 2004; 173: 275 – 84.en_US
dc.identifier.citedreferenceMoody AM, Chui D, Reche PA, Priatel JJ, Marth JD, Reinherz EL. Developmentally regulated glycosylation of the CD8αβ coreceptor stalk modulates ligand binding. Cell 2001; 107: 501 – 12.en_US
dc.identifier.citedreferenceDemetriou M, Granovsky M, Quaggin S, Dennis JW. Negative regulation of T-cell activation and autoimmunity by Mgat5 N -glycosylation. Nature 2001; 409: 733 – 9.en_US
dc.identifier.citedreferenceMa BY, Mikolajczak SA, Yoshida T, Yoshida R, Kelvin DJ, Ochi A. CD28 T cell costimulatory receptor function is negatively regulated by N-linked carbohydrates. Biochem Biophys Res Commun 2004; 317: 60 – 7.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.