Show simple item record

The Caulobacter crescentus GTPase CgtA C is required for progression through the cell cycle and for maintaining 50S ribosomal subunit levels

dc.contributor.authorDatta, Kaustuven_US
dc.contributor.authorSkidmore, Jennifer M.en_US
dc.contributor.authorPu, Kunen_US
dc.contributor.authorMaddock, Janine R.en_US
dc.date.accessioned2010-06-01T22:40:48Z
dc.date.available2010-06-01T22:40:48Z
dc.date.issued2004-12en_US
dc.identifier.citationDatta, Kaustuv; Skidmore, Jennifer M . ; Pu, Kun; Maddock, Janine R . (2004). "The Caulobacter crescentus GTPase CgtA C is required for progression through the cell cycle and for maintaining 50S ribosomal subunit levels." Molecular Microbiology 54(5): 1379-1392. <http://hdl.handle.net/2027.42/75652>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75652
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15554976&dopt=citationen_US
dc.description.abstractThe Obg subfamily of bacterial GTP-binding proteins are biochemically distinct from Ras-like proteins raising the possibility that they are not controlled by conventional guanine nucleotide exchange factors (GEFs) and/or guanine nucleotide activating proteins (GAPs). To test this hypothesis, we generated mutations in the Caulobacter crescentus obg gene ( cgtA C ) which, in Ras-like proteins, would result in either activating or dominant negative phenotypes. In C. crescentus , a P168V mutant is not activating in vivo , although in vitro , the P168V protein showed a modest reduction in the affinity for GDP. Neither the S173N nor N280Y mutations resulted in a dominant negative phenotype. Furthermore, the S173N was significantly impaired for GTP binding, consistent with a critical role of this residue in GTP binding. In general, conserved amino acids in the GTP-binding pocket were, however, important for function. To examine the in vivo consequences of depleting CgtA C , we generated a temperature-sensitive mutant, G80E. At the permissive temperature, G80E cells grow slowly and have reduced levels of 50S ribosomal subunits, indicating that CgtA C is important for 50S assembly and/or stability. Surprisingly, at the non-permissive temperature, G80E  cells  rapidly  lose  viability  and  yet  do not display an additional ribosome defect. Thus, the essential nature of the cgtA C gene does not appear to result from its ribosome function. G80E cells arrest as predivisional cells and stalkless cells. Flow cytometry on synchronized cells reveals a G1-S arrest. Therefore, CgtA C is necessary for DNA replication and progression through the cell cycle.en_US
dc.format.extent348306 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltd.en_US
dc.rights2004 Blackwell Publishing Ltden_US
dc.titleThe Caulobacter crescentus GTPase CgtA C is required for progression through the cell cycle and for maintaining 50S ribosomal subunit levelsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.en_US
dc.identifier.pmid15554976en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75652/1/j.1365-2958.2004.04354.x.pdf
dc.identifier.doi10.1111/j.1365-2958.2004.04354.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceAlfoldi, L., Stent, G. S., and Clowes, R. C. ( 1962 ) The chromosomal site for the RNA control (R.C.) locus in E. coli. J Mol Biol 5: 348 – 355.en_US
dc.identifier.citedreferenceBradford, M. M. ( 1976 ) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248 – 254.en_US
dc.identifier.citedreferenceBuglino, J., Shen, V., Hakimian, P., and Lima, C. D. ( 2002 ) Structural and biochemical analysis of the Obg GTP-binding protein. Structure 10: 1581 – 1592.en_US
dc.identifier.citedreferenceCaldas, T., Binet, E., Bouloc, P., Costa, A., Desgres, J., and Richarme, G. ( 2000 ) The FtsJ/RrmJ heat shock protein of Escherichia coli is a 23 S ribosomal RNA methyltransferase. J Biol Chem 275: 16414 – 16419.en_US
dc.identifier.citedreferenceCaldon, C. E., and March, P. E. ( 2003 ) Function of the universally conserved bacterial GTPases. Curr Opin Microbiol 6: 135 – 139.en_US
dc.identifier.citedreferenceChiaramello, A. E., and Zyskind, J. W. ( 1990 ) Coupling of DNA replication to growth rate in Escherichia coli: a possible role for guanosine tetraphosphate. J Bacteriol 172: 2013 – 2019.en_US
dc.identifier.citedreferenceChiaverotti, T. A., Parker, G., Gallant, J., and Agabian, N. ( 1981 ) Conditions that trigger guanosine tetraphophate accumulation in Caulobacter crescentus. J Bacteriol 145: 1463 – 1465.en_US
dc.identifier.citedreferenceCool, R. H., Schmidt, G., Lenzen, C. U., Prinz, H., Vogt, D., and Wittinghofer, A. ( 1999 ) The Ras mutant D119N is both dominant negative and activated. Mol Cell Biol 19: 6297 – 6305.en_US
dc.identifier.citedreferenceDabbs, E. R. ( 1982 ) A spontaneous mutant of Escherichia coli with protein L24 lacking from the ribosome. Mol Gen Genet 187: 453 – 458.en_US
dc.identifier.citedreferenceDaigle, D. M., Rossi, L., Berghuis, A. M., Aravind, L., Koonin, E. V., and Brown, E. D. ( 2002 ) YjeQ, an essential, conserved, uncharacterized protein from Escherichia coli, is an unusual GTPase with circularly permuted G-Motifs and marked burst kinetics. Biochemistry 41: 11109 – 11117.en_US
dc.identifier.citedreferenceDegnen, S. T., and Newton, A. ( 1972 ) Chromosome replication during development in Caulobacter crescentus. J Mol Biol 64: 671 – 680.en_US
dc.identifier.citedreferenceEly, B. ( 1979 ) Transfer of drug resistance factors to the dimorphic bacterium Caulobacter crescentus. Genetics 91: 371 – 380.en_US
dc.identifier.citedreferenceEvinger, M., and Agabian, N. ( 1977 ) Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. J Bacteriol 132: 294 – 301.en_US
dc.identifier.citedreferenceFarnsworth, C. L., and Feig, L. A. ( 1991 ) Dominant inhibitory mutations in the Mg(2+)-binding site of RasH prevent its activation by GTP. Mol Cell Biol 11: 4822 – 4829.en_US
dc.identifier.citedreferenceFranceschi, F. J., and Nierhaus, K. H. ( 1990 ) Ribosomal proteins L15 and L16 are mere late assembly proteins of the large ribosomal subunit. Analysis of an Escherichia coli mutant lacking L15. J Biol Chem 265: 16676 – 16682.en_US
dc.identifier.citedreferenceGentry, D., and Cashel, M. ( 1995 ) Cellular location of the Escherichia coli SpoT protein. J Bacteriol 177: 3890 – 3893.en_US
dc.identifier.citedreferenceGibbs, J. B., Schaber, M. D., Allard, W. J., Sigal, I. S., and Scolnick, E. M. ( 1988 ) Purification of ras GTPase activating protein from bovine brain. Proc Natl Acad Sci USA 85: 5026 – 5030.en_US
dc.identifier.citedreferenceHaseltine, W. A., and Bock, R. ( 1973 ) Synthesis of guanosine tetra and pentaphosphate requires the presence of a codon-specific uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc Natl Acad Sci USA 70: 1564 – 1568.en_US
dc.identifier.citedreferenceHernandez, V. J., and Bremer, H. ( 1991 ) Escherichia coli ppGpp synthetase II activity requires spoT. J Biol Chem 266: 5991 – 5999.en_US
dc.identifier.citedreferenceHerold, M., Nowotny, V., Dabbs, E. R., and Nierhaus, K. H. ( 1986 ) Assembly analysis of ribosomes from a mutant lacking the assembly-initiator protein L24: lack of L24 induces temperature sensitivity. Mol Gen Genet 203: 281 – 287.en_US
dc.identifier.citedreferenceHwang, J., and Inouye, M. ( 2001 ) An essential GTPase, der, containing double GTP-binding domains from Escherichia coli and Thermotoga maritima. J Biol Chem 17: 31415 – 31421.en_US
dc.identifier.citedreferenceJensen, B. C., Wang, Q., Kifer, C. T., and Parsons, M. ( 2003 ) The NOG1 GTP-binding protein is required for biogenesis of the 60S ribosomal subunit. J Biol Chem 278: 32204 – 32211.en_US
dc.identifier.citedreferenceJohn, J., Rensland, H., Schlichting, I., Vetter, I., Borasio, G. D., Goody, R. S., and Wittinghofer, A. ( 1993 ) Kinetic and structural analysis of the Mg(2+)-binding site of the guanine nucleotide-binding protein p21H-ras. J Biol Chem 268: 923 – 929.en_US
dc.identifier.citedreferenceKallstrom, G., Hedges, J., and Johnson, A. ( 2003 ) The putative GTPases Nog1p and Lsg1p are required for 60S ribosomal subunit biogenesis and are localized to the nucleus and cytoplasm, respectively. Mol Cell Biol 23: 4344 – 4355.en_US
dc.identifier.citedreferenceKobayashi, G., Moriya, S., and Wada, C. ( 2001 ) Deficiency of essential GTP-binding protein Obg E in Escherichia coli inhibits chromosome partition. Mol Microbiol 41: 1037 – 1051.en_US
dc.identifier.citedreferenceKok, J., Trach, K. A., and Hoch, J. A. ( 1994 ) Effects on Bacillus subtilis of a conditional lethal mutation in the essential GTP-binding protein Obg. J Bacteriol 176: 7155 – 7160.en_US
dc.identifier.citedreferenceKukimoto-Niino, M., Murayama, K., Inoue, M., Terada, T., Tame, J. R., Kuramitsu, S., et al. ( 2004 ) Crystal structure of the GTP-binding protein Obg from Thermus thermophilus HB8. J Mol Biol 337: 761 – 770.en_US
dc.identifier.citedreferenceLehoux, I. E., Mazzulla, M. J., Baker, A., and Petit, C. M. ( 2003 ) Purification and characterization of YihA, an essential GTP-binding protein from Escherichia coli. Protein Expr Purif 30: 203 – 209.en_US
dc.identifier.citedreferenceLeipe, D. D., Wolf, Y. I., Koonin, E. V., and Aravind, L. ( 2002 ) Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol 317: 41 – 72.en_US
dc.identifier.citedreferenceLin, B., and Maddock, J. R. ( 2001 ) The N-terminal domain of the Caulobacter crescentus CgtA protein does not function as a guanine nucleotide exchange factor. FEBS Lett 489: 108 – 111.en_US
dc.identifier.citedreferenceLin, B., Covalle, K. L., and Maddock, J. R. ( 1999 ) The Caulobacter crescentus CgtA protein displays unusual guanine nucleotide binding and exchange properties. J Bacteriol 181: 5825 – 5832.en_US
dc.identifier.citedreferenceLin, B., Skidmore, J. M., Bhatt, A., Pfeffer, S. M., Pawloski, L., and Maddock, J. R. ( 2001 ) Alanine scan mutagenesis of the switch I domain of the Caulobacter crescentus CgtA protein reveals critical amino acids required for in vivo function. Mol Microbiol 39: 924 – 934.en_US
dc.identifier.citedreferenceLin, B., Thayer, D. A., and Maddock, J. R. ( 2004 ) The Caulobacter crescentus CgtA C protein cosediments with the free 50S ribosomal subunit. J Bacteriol 186: 481 – 489.en_US
dc.identifier.citedreferenceMaddock, J., Bhatt, A., Koch, M., and Skidmore, J. ( 1997 ) Identification of an essential Caulobacter crescentus gene encoding a member of the Obg family of GTP-binding proteins. J Bacteriol 179: 6426 – 6431.en_US
dc.identifier.citedreferenceMarczynski, G. T., Lentine, K., and Shapiro, L. ( 1995 ) A developmentally regulated chromosomal origin of replication uses essential transcription elements. Genes Dev 9: 1543 – 1557.en_US
dc.identifier.citedreferenceMarvaldi, J., Pichon, J., and Marchis-Mouren, G. ( 1979 ) On the control of ribosomal protein biosynthesis in E. coli. IV. Studies on a temperature-sensitive mutant defective in the assembly of 50S subunits. Mol Gen Genet 171: 317 – 325.en_US
dc.identifier.citedreferenceOkamoto, S., and Ochi, K. ( 1998 ) An essential GTP-binding protein functions as a regulator of differentiation in Streptomyces coelicolor. Mol Microbiol 30: 107 – 119.en_US
dc.identifier.citedreferenceOrr, E., Fairweather, N. F., Holland, I. B., and Pritchard, R. H. ( 1979 ) Isolation and characterisation of a strain carrying a conditional lethal mutation in the cou gene of Escherichia coli K12. Mol Gen Genet 177: 102 – 112.en_US
dc.identifier.citedreferencePoindexter, J. S. ( 1964 ) Biological properties and classification of the Caulobacter group. Bacteriol Rev 28: 231 – 295.en_US
dc.identifier.citedreferenceRamagopal, S., and Davis, B. D. ( 1974 ) Localization of the stringent protein of Escherichia coli on the 50S ribosomal subunit. Proc Natl Acad Sci 71: 820 – 824.en_US
dc.identifier.citedreferenceRichter, D. ( 1980 ) Uncharged tRNA inhibits guanosine 3′,5′-bis (diphosphate) 3′-pyrophosphohydrolase [ppGppase], the spoT gene product, from Escherichia coli. Mol Gen Genet 178: 325 – 327.en_US
dc.identifier.citedreferenceScott, J. M., and Haldenwang, W. G. ( 1999 ) Obg, and essential GTP binding protein of Bacillus subtilis, is necessary for stress activation of transcription factor Σ B. J Bacteriol 181: 4653 – 4660.en_US
dc.identifier.citedreferenceScott, J. M., Ju, J., Mitchell, T., and Haldenwang, W. G. ( 2000 ) The Bacillus subtilis GTP binding protein Obg and regulators of the Σ B stress response transcription factor cofractionate with ribosomes. J Bacteriol 182: 2771 – 2777.en_US
dc.identifier.citedreferenceStephens, C., Mohr, C., Boyd, C., Maddock, J., Gober, J., and Shapiro, L. ( 1997 ) Identification of the fliI and fliJ components of the Caulobacter flagellar type III protein secretion system. J Bacteriol 179: 5355 – 5366.en_US
dc.identifier.citedreferenceSullivan, S. M., Mishra, R., Neubig, R. R., and Maddock, J. R. ( 2000 ) Analysis of guanine nucleotide binding and exchange kinetics of the Escherichia coli GTPase Era. J Bacteriol 182: 3460 – 3466.en_US
dc.identifier.citedreferenceTan, J., Jakob, U., and Bardwell, J. C. ( 2002 ) Overexpression of two different GTPases rescues a null mutation in a heat-induced rRNA methyltransferase. J Bacteriol 184: 2692 – 2698.en_US
dc.identifier.citedreferenceTrach, K., and Hoch, J. A. ( 1989 ) The Bacillus subtilis spoOB stage 0 sporulation operon encodes an essential GTP-binding protein. J Bacteriol 171: 1362 – 1371.en_US
dc.identifier.citedreferenceUlanowska, K., Sikora, A., Wegrzyn, G., and Czyz, A. ( 2003 ) Role of the cgtA gene function in DNA replication of extrachromosomal elements in Escherichia coli. Plasmid 50: 45 – 52.en_US
dc.identifier.citedreferenceWelsh, K. M., Trach, K. A., Folger, C., and Hoch, J. A. ( 1994 ) Biochemical characterization of the essential GTP-binding protein Obg of Bacillus subtilis. J Bacteriol 176: 7161 – 7168.en_US
dc.identifier.citedreferenceWolf, Y. I., Aravind, L., Grishin, N. V., and Koonin, E. V. ( 1999 ) Evolution of aminoacyl-tRNA synthetases – analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res 9: 689 – 710.en_US
dc.identifier.citedreferenceWout, P., Pu, K., Sullivan, S. M., Reese, V., Zhou, S., Lin, B., and Maddock, J. R. ( 2004 ) The Escherichia coli GTPase, CgtA E, cofractionates with the 50S ribosomal subunit and interacts with SpoT, a ppGpp synthetase/hydrolase. J Bacteriol 186: 5249 – 5257.en_US
dc.identifier.citedreferenceWower, I. K., Wower, J., and Zimmermann, R. A. ( 1998 ) Ribosomal protein L27 participates in both 50 S subunit assembly and the peptidyl transferase reaction. J Biol Chem 273: 19847 – 19852.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.