The Caulobacter crescentus GTPase CgtA C is required for progression through the cell cycle and for maintaining 50S ribosomal subunit levels
dc.contributor.author | Datta, Kaustuv | en_US |
dc.contributor.author | Skidmore, Jennifer M. | en_US |
dc.contributor.author | Pu, Kun | en_US |
dc.contributor.author | Maddock, Janine R. | en_US |
dc.date.accessioned | 2010-06-01T22:40:48Z | |
dc.date.available | 2010-06-01T22:40:48Z | |
dc.date.issued | 2004-12 | en_US |
dc.identifier.citation | Datta, Kaustuv; Skidmore, Jennifer M . ; Pu, Kun; Maddock, Janine R . (2004). "The Caulobacter crescentus GTPase CgtA C is required for progression through the cell cycle and for maintaining 50S ribosomal subunit levels." Molecular Microbiology 54(5): 1379-1392. <http://hdl.handle.net/2027.42/75652> | en_US |
dc.identifier.issn | 0950-382X | en_US |
dc.identifier.issn | 1365-2958 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/75652 | |
dc.identifier.uri | http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15554976&dopt=citation | en_US |
dc.description.abstract | The Obg subfamily of bacterial GTP-binding proteins are biochemically distinct from Ras-like proteins raising the possibility that they are not controlled by conventional guanine nucleotide exchange factors (GEFs) and/or guanine nucleotide activating proteins (GAPs). To test this hypothesis, we generated mutations in the Caulobacter crescentus obg gene ( cgtA C ) which, in Ras-like proteins, would result in either activating or dominant negative phenotypes. In C. crescentus , a P168V mutant is not activating in vivo , although in vitro , the P168V protein showed a modest reduction in the affinity for GDP. Neither the S173N nor N280Y mutations resulted in a dominant negative phenotype. Furthermore, the S173N was significantly impaired for GTP binding, consistent with a critical role of this residue in GTP binding. In general, conserved amino acids in the GTP-binding pocket were, however, important for function. To examine the in vivo consequences of depleting CgtA C , we generated a temperature-sensitive mutant, G80E. At the permissive temperature, G80E cells grow slowly and have reduced levels of 50S ribosomal subunits, indicating that CgtA C is important for 50S assembly and/or stability. Surprisingly, at the non-permissive temperature, G80E cells rapidly lose viability and yet do not display an additional ribosome defect. Thus, the essential nature of the cgtA C gene does not appear to result from its ribosome function. G80E cells arrest as predivisional cells and stalkless cells. Flow cytometry on synchronized cells reveals a G1-S arrest. Therefore, CgtA C is necessary for DNA replication and progression through the cell cycle. | en_US |
dc.format.extent | 348306 bytes | |
dc.format.extent | 3109 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.publisher | Blackwell Publishing Ltd. | en_US |
dc.rights | 2004 Blackwell Publishing Ltd | en_US |
dc.title | The Caulobacter crescentus GTPase CgtA C is required for progression through the cell cycle and for maintaining 50S ribosomal subunit levels | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Microbiology and Immunology | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA. | en_US |
dc.identifier.pmid | 15554976 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/75652/1/j.1365-2958.2004.04354.x.pdf | |
dc.identifier.doi | 10.1111/j.1365-2958.2004.04354.x | en_US |
dc.identifier.source | Molecular Microbiology | en_US |
dc.identifier.citedreference | Alfoldi, L., Stent, G. S., and Clowes, R. C. ( 1962 ) The chromosomal site for the RNA control (R.C.) locus in E. coli. J Mol Biol 5: 348 – 355. | en_US |
dc.identifier.citedreference | Bradford, M. M. ( 1976 ) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248 – 254. | en_US |
dc.identifier.citedreference | Buglino, J., Shen, V., Hakimian, P., and Lima, C. D. ( 2002 ) Structural and biochemical analysis of the Obg GTP-binding protein. Structure 10: 1581 – 1592. | en_US |
dc.identifier.citedreference | Caldas, T., Binet, E., Bouloc, P., Costa, A., Desgres, J., and Richarme, G. ( 2000 ) The FtsJ/RrmJ heat shock protein of Escherichia coli is a 23 S ribosomal RNA methyltransferase. J Biol Chem 275: 16414 – 16419. | en_US |
dc.identifier.citedreference | Caldon, C. E., and March, P. E. ( 2003 ) Function of the universally conserved bacterial GTPases. Curr Opin Microbiol 6: 135 – 139. | en_US |
dc.identifier.citedreference | Chiaramello, A. E., and Zyskind, J. W. ( 1990 ) Coupling of DNA replication to growth rate in Escherichia coli: a possible role for guanosine tetraphosphate. J Bacteriol 172: 2013 – 2019. | en_US |
dc.identifier.citedreference | Chiaverotti, T. A., Parker, G., Gallant, J., and Agabian, N. ( 1981 ) Conditions that trigger guanosine tetraphophate accumulation in Caulobacter crescentus. J Bacteriol 145: 1463 – 1465. | en_US |
dc.identifier.citedreference | Cool, R. H., Schmidt, G., Lenzen, C. U., Prinz, H., Vogt, D., and Wittinghofer, A. ( 1999 ) The Ras mutant D119N is both dominant negative and activated. Mol Cell Biol 19: 6297 – 6305. | en_US |
dc.identifier.citedreference | Dabbs, E. R. ( 1982 ) A spontaneous mutant of Escherichia coli with protein L24 lacking from the ribosome. Mol Gen Genet 187: 453 – 458. | en_US |
dc.identifier.citedreference | Daigle, D. M., Rossi, L., Berghuis, A. M., Aravind, L., Koonin, E. V., and Brown, E. D. ( 2002 ) YjeQ, an essential, conserved, uncharacterized protein from Escherichia coli, is an unusual GTPase with circularly permuted G-Motifs and marked burst kinetics. Biochemistry 41: 11109 – 11117. | en_US |
dc.identifier.citedreference | Degnen, S. T., and Newton, A. ( 1972 ) Chromosome replication during development in Caulobacter crescentus. J Mol Biol 64: 671 – 680. | en_US |
dc.identifier.citedreference | Ely, B. ( 1979 ) Transfer of drug resistance factors to the dimorphic bacterium Caulobacter crescentus. Genetics 91: 371 – 380. | en_US |
dc.identifier.citedreference | Evinger, M., and Agabian, N. ( 1977 ) Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. J Bacteriol 132: 294 – 301. | en_US |
dc.identifier.citedreference | Farnsworth, C. L., and Feig, L. A. ( 1991 ) Dominant inhibitory mutations in the Mg(2+)-binding site of RasH prevent its activation by GTP. Mol Cell Biol 11: 4822 – 4829. | en_US |
dc.identifier.citedreference | Franceschi, F. J., and Nierhaus, K. H. ( 1990 ) Ribosomal proteins L15 and L16 are mere late assembly proteins of the large ribosomal subunit. Analysis of an Escherichia coli mutant lacking L15. J Biol Chem 265: 16676 – 16682. | en_US |
dc.identifier.citedreference | Gentry, D., and Cashel, M. ( 1995 ) Cellular location of the Escherichia coli SpoT protein. J Bacteriol 177: 3890 – 3893. | en_US |
dc.identifier.citedreference | Gibbs, J. B., Schaber, M. D., Allard, W. J., Sigal, I. S., and Scolnick, E. M. ( 1988 ) Purification of ras GTPase activating protein from bovine brain. Proc Natl Acad Sci USA 85: 5026 – 5030. | en_US |
dc.identifier.citedreference | Haseltine, W. A., and Bock, R. ( 1973 ) Synthesis of guanosine tetra and pentaphosphate requires the presence of a codon-specific uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc Natl Acad Sci USA 70: 1564 – 1568. | en_US |
dc.identifier.citedreference | Hernandez, V. J., and Bremer, H. ( 1991 ) Escherichia coli ppGpp synthetase II activity requires spoT. J Biol Chem 266: 5991 – 5999. | en_US |
dc.identifier.citedreference | Herold, M., Nowotny, V., Dabbs, E. R., and Nierhaus, K. H. ( 1986 ) Assembly analysis of ribosomes from a mutant lacking the assembly-initiator protein L24: lack of L24 induces temperature sensitivity. Mol Gen Genet 203: 281 – 287. | en_US |
dc.identifier.citedreference | Hwang, J., and Inouye, M. ( 2001 ) An essential GTPase, der, containing double GTP-binding domains from Escherichia coli and Thermotoga maritima. J Biol Chem 17: 31415 – 31421. | en_US |
dc.identifier.citedreference | Jensen, B. C., Wang, Q., Kifer, C. T., and Parsons, M. ( 2003 ) The NOG1 GTP-binding protein is required for biogenesis of the 60S ribosomal subunit. J Biol Chem 278: 32204 – 32211. | en_US |
dc.identifier.citedreference | John, J., Rensland, H., Schlichting, I., Vetter, I., Borasio, G. D., Goody, R. S., and Wittinghofer, A. ( 1993 ) Kinetic and structural analysis of the Mg(2+)-binding site of the guanine nucleotide-binding protein p21H-ras. J Biol Chem 268: 923 – 929. | en_US |
dc.identifier.citedreference | Kallstrom, G., Hedges, J., and Johnson, A. ( 2003 ) The putative GTPases Nog1p and Lsg1p are required for 60S ribosomal subunit biogenesis and are localized to the nucleus and cytoplasm, respectively. Mol Cell Biol 23: 4344 – 4355. | en_US |
dc.identifier.citedreference | Kobayashi, G., Moriya, S., and Wada, C. ( 2001 ) Deficiency of essential GTP-binding protein Obg E in Escherichia coli inhibits chromosome partition. Mol Microbiol 41: 1037 – 1051. | en_US |
dc.identifier.citedreference | Kok, J., Trach, K. A., and Hoch, J. A. ( 1994 ) Effects on Bacillus subtilis of a conditional lethal mutation in the essential GTP-binding protein Obg. J Bacteriol 176: 7155 – 7160. | en_US |
dc.identifier.citedreference | Kukimoto-Niino, M., Murayama, K., Inoue, M., Terada, T., Tame, J. R., Kuramitsu, S., et al. ( 2004 ) Crystal structure of the GTP-binding protein Obg from Thermus thermophilus HB8. J Mol Biol 337: 761 – 770. | en_US |
dc.identifier.citedreference | Lehoux, I. E., Mazzulla, M. J., Baker, A., and Petit, C. M. ( 2003 ) Purification and characterization of YihA, an essential GTP-binding protein from Escherichia coli. Protein Expr Purif 30: 203 – 209. | en_US |
dc.identifier.citedreference | Leipe, D. D., Wolf, Y. I., Koonin, E. V., and Aravind, L. ( 2002 ) Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol 317: 41 – 72. | en_US |
dc.identifier.citedreference | Lin, B., and Maddock, J. R. ( 2001 ) The N-terminal domain of the Caulobacter crescentus CgtA protein does not function as a guanine nucleotide exchange factor. FEBS Lett 489: 108 – 111. | en_US |
dc.identifier.citedreference | Lin, B., Covalle, K. L., and Maddock, J. R. ( 1999 ) The Caulobacter crescentus CgtA protein displays unusual guanine nucleotide binding and exchange properties. J Bacteriol 181: 5825 – 5832. | en_US |
dc.identifier.citedreference | Lin, B., Skidmore, J. M., Bhatt, A., Pfeffer, S. M., Pawloski, L., and Maddock, J. R. ( 2001 ) Alanine scan mutagenesis of the switch I domain of the Caulobacter crescentus CgtA protein reveals critical amino acids required for in vivo function. Mol Microbiol 39: 924 – 934. | en_US |
dc.identifier.citedreference | Lin, B., Thayer, D. A., and Maddock, J. R. ( 2004 ) The Caulobacter crescentus CgtA C protein cosediments with the free 50S ribosomal subunit. J Bacteriol 186: 481 – 489. | en_US |
dc.identifier.citedreference | Maddock, J., Bhatt, A., Koch, M., and Skidmore, J. ( 1997 ) Identification of an essential Caulobacter crescentus gene encoding a member of the Obg family of GTP-binding proteins. J Bacteriol 179: 6426 – 6431. | en_US |
dc.identifier.citedreference | Marczynski, G. T., Lentine, K., and Shapiro, L. ( 1995 ) A developmentally regulated chromosomal origin of replication uses essential transcription elements. Genes Dev 9: 1543 – 1557. | en_US |
dc.identifier.citedreference | Marvaldi, J., Pichon, J., and Marchis-Mouren, G. ( 1979 ) On the control of ribosomal protein biosynthesis in E. coli. IV. Studies on a temperature-sensitive mutant defective in the assembly of 50S subunits. Mol Gen Genet 171: 317 – 325. | en_US |
dc.identifier.citedreference | Okamoto, S., and Ochi, K. ( 1998 ) An essential GTP-binding protein functions as a regulator of differentiation in Streptomyces coelicolor. Mol Microbiol 30: 107 – 119. | en_US |
dc.identifier.citedreference | Orr, E., Fairweather, N. F., Holland, I. B., and Pritchard, R. H. ( 1979 ) Isolation and characterisation of a strain carrying a conditional lethal mutation in the cou gene of Escherichia coli K12. Mol Gen Genet 177: 102 – 112. | en_US |
dc.identifier.citedreference | Poindexter, J. S. ( 1964 ) Biological properties and classification of the Caulobacter group. Bacteriol Rev 28: 231 – 295. | en_US |
dc.identifier.citedreference | Ramagopal, S., and Davis, B. D. ( 1974 ) Localization of the stringent protein of Escherichia coli on the 50S ribosomal subunit. Proc Natl Acad Sci 71: 820 – 824. | en_US |
dc.identifier.citedreference | Richter, D. ( 1980 ) Uncharged tRNA inhibits guanosine 3′,5′-bis (diphosphate) 3′-pyrophosphohydrolase [ppGppase], the spoT gene product, from Escherichia coli. Mol Gen Genet 178: 325 – 327. | en_US |
dc.identifier.citedreference | Scott, J. M., and Haldenwang, W. G. ( 1999 ) Obg, and essential GTP binding protein of Bacillus subtilis, is necessary for stress activation of transcription factor Σ B. J Bacteriol 181: 4653 – 4660. | en_US |
dc.identifier.citedreference | Scott, J. M., Ju, J., Mitchell, T., and Haldenwang, W. G. ( 2000 ) The Bacillus subtilis GTP binding protein Obg and regulators of the Σ B stress response transcription factor cofractionate with ribosomes. J Bacteriol 182: 2771 – 2777. | en_US |
dc.identifier.citedreference | Stephens, C., Mohr, C., Boyd, C., Maddock, J., Gober, J., and Shapiro, L. ( 1997 ) Identification of the fliI and fliJ components of the Caulobacter flagellar type III protein secretion system. J Bacteriol 179: 5355 – 5366. | en_US |
dc.identifier.citedreference | Sullivan, S. M., Mishra, R., Neubig, R. R., and Maddock, J. R. ( 2000 ) Analysis of guanine nucleotide binding and exchange kinetics of the Escherichia coli GTPase Era. J Bacteriol 182: 3460 – 3466. | en_US |
dc.identifier.citedreference | Tan, J., Jakob, U., and Bardwell, J. C. ( 2002 ) Overexpression of two different GTPases rescues a null mutation in a heat-induced rRNA methyltransferase. J Bacteriol 184: 2692 – 2698. | en_US |
dc.identifier.citedreference | Trach, K., and Hoch, J. A. ( 1989 ) The Bacillus subtilis spoOB stage 0 sporulation operon encodes an essential GTP-binding protein. J Bacteriol 171: 1362 – 1371. | en_US |
dc.identifier.citedreference | Ulanowska, K., Sikora, A., Wegrzyn, G., and Czyz, A. ( 2003 ) Role of the cgtA gene function in DNA replication of extrachromosomal elements in Escherichia coli. Plasmid 50: 45 – 52. | en_US |
dc.identifier.citedreference | Welsh, K. M., Trach, K. A., Folger, C., and Hoch, J. A. ( 1994 ) Biochemical characterization of the essential GTP-binding protein Obg of Bacillus subtilis. J Bacteriol 176: 7161 – 7168. | en_US |
dc.identifier.citedreference | Wolf, Y. I., Aravind, L., Grishin, N. V., and Koonin, E. V. ( 1999 ) Evolution of aminoacyl-tRNA synthetases – analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res 9: 689 – 710. | en_US |
dc.identifier.citedreference | Wout, P., Pu, K., Sullivan, S. M., Reese, V., Zhou, S., Lin, B., and Maddock, J. R. ( 2004 ) The Escherichia coli GTPase, CgtA E, cofractionates with the 50S ribosomal subunit and interacts with SpoT, a ppGpp synthetase/hydrolase. J Bacteriol 186: 5249 – 5257. | en_US |
dc.identifier.citedreference | Wower, I. K., Wower, J., and Zimmermann, R. A. ( 1998 ) Ribosomal protein L27 participates in both 50 S subunit assembly and the peptidyl transferase reaction. J Biol Chem 273: 19847 – 19852. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.