Show simple item record

Induction of MMP-1 (collagenase-1) by relaxin in fibrocartilaginous cells requires both the AP-1 and PEA-3 promoter sites

dc.contributor.authorKapila, Sunilen_US
dc.contributor.authorXie, Y.en_US
dc.contributor.authorWang, W.en_US
dc.date.accessioned2010-06-01T22:42:20Z
dc.date.available2010-06-01T22:42:20Z
dc.date.issued2009-08en_US
dc.identifier.citationKapila, S; Xie, Y; Wang, W (2009). "Induction of MMP-1 (collagenase-1) by relaxin in fibrocartilaginous cells requires both the AP-1 and PEA-3 promoter sites." Orthodontics & Craniofacial Research 12(3 Proceedings of the Fourth Biennial Conference: Biomedicine in Orthodontics - From Tooth Movement to Facial Growth ): 178-186. <http://hdl.handle.net/2027.42/75676>en_US
dc.identifier.issn1601-6335en_US
dc.identifier.issn1601-6343en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75676
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19627519&dopt=citationen_US
dc.format.extent290751 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2009 John Wiley & Sons A/Sen_US
dc.subject.otherAP-1en_US
dc.subject.otherFibrocartilaginous Cellsen_US
dc.subject.otherMMP-1en_US
dc.subject.otherPEA-3en_US
dc.subject.otherRelaxinen_US
dc.titleInduction of MMP-1 (collagenase-1) by relaxin in fibrocartilaginous cells requires both the AP-1 and PEA-3 promoter sitesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelDentistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid19627519en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75676/1/j.1601-6343.2009.01451.x.pdf
dc.identifier.doi10.1111/j.1601-6343.2009.01451.xen_US
dc.identifier.sourceOrthodontics & Craniofacial Researchen_US
dc.identifier.citedreferenceKapila S, Xie Y. Targeted induction of collagenase and stromelysin by relaxin in unprimed and beta-estradiol-primed diarthrodial joint fibrocartilaginous cells but not in synoviocytes. Lab Invest 1998; 78: 925 – 38.en_US
dc.identifier.citedreferenceKapila S, Wang W, Uston K. MMP induction by relaxin causes cartilage matrix degradation in target synovial joints: Receptor profiles correlate with matrix turnover. Ann. N.Y. Acad. Sci. 2009; 1160: 322 – 9.en_US
dc.identifier.citedreferenceNaqvi T, Duong TT, Hashem G, Shiga M, Zhang Q, Kapila S. Relaxin’s induction of metalloproteinases is associated with the loss of collagen and glycosaminoglycans in synovial joint fibrocartilaginous explants. Arthritis Res Ther 2005; 7: R1 – 11.en_US
dc.identifier.citedreferenceTower GB, Coon CI, Brinckerhoff CE. The 2G single nucleotide polymorphism (SNP) in the MMP-1 promoter contributes to high levels of MMP-1 transcription in MCF-7/ADR breast cancer cells. Breast Cancer Res Treat 2003; 82: 75 – 82.en_US
dc.identifier.citedreferenceVincenti MP, White LA, Schroen DJ, Benbow U, Brinckerhoff CE. Regulating expression of the gene for matrix metalloproteinase-1 (collagenase): mechanisms that control enzyme activity, transcription and mRNA stability. Crit Rev Eukaryot Gene Expr 1996; 6: 391 – 411.en_US
dc.identifier.citedreferenceDoyle GA, Pierce RA, Parks WC. Transcriptional induction of collagenase-1 in differentiated monocyte-like (U-937) cells is regulated by AP-1 and an upstream C/EBP-beta site. J Biol Chem 1997; 272: 11840 – 9.en_US
dc.identifier.citedreferenceAuble DT, Brinckerhoff CE. The AP-1 sequence is necessary but not sufficient for phorbol induction of collagenase in fibroblasts. Biochemistry 1991; 30: 4629 – 35.en_US
dc.identifier.citedreferenceTremble P, Damsky CH, Werb Z. Components of the nuclear signaling cascade that regulate collagenase gene expression in response to integrin-derived signals. J Cell Biol 1995; 129: 1707 – 20.en_US
dc.identifier.citedreferenceChapman SC, Ayala JE, Streeper RS, Culbert AA, Eaton EM, Svitek CA et al. Multiple promoter elements are required for the stimulatory effect of insulin on human collagenase-1 gene transcription. Selective effects on activator protein-1 expression may explain the quantitative difference in insulin and phorbol ester action. J Biol Chem 1999; 274: 18625 – 34.en_US
dc.identifier.citedreferenceGutman A, Wasylyk B. The collagenase gene promoter contains a TPA and oncogene-responsive unit encompassing the PEA3 and AP-1 binding sites. EMBO J 1990; 9: 2241 – 6.en_US
dc.identifier.citedreferencePerlman H, Bradley K, Liu H, Cole S, Shamiyeh E, Smith RC et al. IL-6 and matrix metalloproteinase-1 are regulated by the cyclin-dependent kinase inhibitor p21 in synovial fibroblasts. J Immunology 2003; 170: 838 – 45.en_US
dc.identifier.citedreferenceReunanen N, Westermarck J, Hakkinen L, Holmstrom TH, Elo I, Eriksson JE et al. Enhancement of fibroblast collagenase (matrix metalloproteinase-1) gene expression by ceramide is mediated by extracellular signal-regulated and stress-activated protein kinase pathways. J Biol Chem 1998; 273: 5137 – 45.en_US
dc.identifier.citedreferenceUria JA, Jimenez MG, Balbin M, Freije JM, Lopez-Otin C. Differential effects of transforming growth factor-beta on the expression of collagenase-1 and collagenase-3 in human fibroblasts. J Biol Chem 1998; 273: 9769 – 77.en_US
dc.identifier.citedreferenceVincenti MP, Schroen DJ, Coon CI, Brinckerhoff CE. V-src activation of the collagenase-1 promoter through PEA3 and STAT: requirement of extracellular signal-regulated kinases and inhibition by retinoic acid receptors. Mol Carcinog 1998; 21: 194 – 204.en_US
dc.identifier.citedreferenceAngel P, Baumann I, Stein B, Delius H, Rahmsdorf HJ, Herrlich P. 12-O-tetradecanoyl-phorbol-13-acetate induction of the human collagenase gene is mediated by an inducible enhancer element located in the 5′-flanking region. Mol Cell Biol 1987; 7: 2256 – 66.en_US
dc.identifier.citedreferenceKapila S, Lee C, Richards DW. Characterization and identification of proteinases and proteinase inhibitors synthesized by temporomandibular joint disc cells. J Dent Res 1995; 74: 1328 – 36.en_US
dc.identifier.citedreferenceGrimberg A, Cohen P. Role of Insulin-like growth factors and their binding proteins in growth control and carcinogenesis. J Cell Physiol 2000; 183: 1 – 98.en_US
dc.identifier.citedreferenceHallberg LM, Ikeno Y, Englander E, George H. Effects of aging and caloric restriction on IGF-I, IGF-I receptor, IGFBP-3 and IGFBP-4 gene expression in the rat stomach and colon. Regul Pept 2000; 89: 37 – 44.en_US
dc.identifier.citedreferenceLeng SL, Leeding KS, Whitehead RH, Bach LA. Insulin-like growth factor (IGF)-binding protein-6 inhibits IGF-II-induced but not basal proliferation and adhesion of LIM 1215 colon cancer cells. Mol Cell Endocrinol 2001; 174: 121 – 7.en_US
dc.identifier.citedreferenceZhou R, Diehl D, Hoeflich A, Lahm H, Wolf E. IGF-binding protein-4: biochemical characteristics and functional consequences. J Endocrinol 2003; 178: 177 – 93.en_US
dc.identifier.citedreferenceSamuel CS, Butkus A, Coghlan JP, Bateman JF. The effect of relaxin on collagen metabolism in the nonpregnant rat pubic symphysis: the influence of estrogen and progesterone in regulating relaxin activity. Endocrinology 1996; 137: 3884 – 90.en_US
dc.identifier.citedreferenceAyala JE, Streeper RS, Svitek CA, Goldman JK, Oeser JK, O’Brien RM. Accessory elements, flanking DNA sequence, and promoter context play key roles in determining the efficacy of insulin and phorbol ester signaling through the malic enzyme and collagenase-1 AP-1 motifs. J Bio Chem 2002; 277: 27935 – 44.en_US
dc.identifier.citedreferenceBennett BL, Satoh Y, Lewis AJ. JNK: a new therapeutic target for diabetes. Curr Opin Pharmacol 2003; 3: 420 – 5.en_US
dc.identifier.citedreferenceO’Brien RM, Streeper RS, Ayala JE, Stadelmaier BT, Hornbuckle LA. Insulin-regulated gene expression. Biochem Soc Trans 2001; 29: 552 – 8.en_US
dc.identifier.citedreferenceAyala JE, Boustead JN, Chapman SC, Svitek CA, Oeser JK, Robey RB et al. Insulin-mediated activation of activator protein-1 through the mitogen-activated protein kinase pathway stimulates collagenase-1 gene transcription in the MES 13 mesangial cell line. J Mol Endocrinol 2004; 33: 263 – 80.en_US
dc.identifier.citedreferenceAnand-Ivell R, Heng K, Bartsch O, Ivell R. Relaxin signalling in THP-1 cells uses a novel phosphotyrosine-dependent pathway. Mol Cell Endocrinol 2007; 272: 1 – 13.en_US
dc.identifier.citedreferenceHalls ML, Bathgate RA, Summers RJ. Comparison of signaling pathways activated by the relaxin family peptide receptors, RXFP1 and RXFP2, using reporter genes. J Pharmacol Exp Ther 2007; 320: 281 – 90.en_US
dc.identifier.citedreferenceHo TY, Yan W, Bagnell CA. Relaxin-induced matrix metalloproteinase-9 expression is associated with activation of the NF-kappaB pathway in human THP-1 cells. J Leukoc Biol 2007; 81: 1303 – 10.en_US
dc.identifier.citedreferenceIvell R, Heng K, Anand-Ivell R. Diverse signalling mechanisms used by relaxin in natural cells and tissues: the evolution of a “neohormone”. Adv Exp Med Biol 2007; 612: 626.en_US
dc.identifier.citedreferenceKushner PJ, Agard DA, Greene GL, Scanlan TS, Shiau AK, Uht RM et al. Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol 2000; 74: 311 – 7.en_US
dc.identifier.citedreferenceStein B, Yang MX. Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-κB and C/EBPβ. Mol Cell Biol 1995; 15: 4971 – 9.en_US
dc.identifier.citedreferenceGarcia-Arencibia M, Davila N, Camion J, Carranza MC, Calle C. Identification of two functional estrogen response elements complexed with AP-1-like sites in the human insulin receptor gene promoter. J Steroid Biochem Mol Biol 2005; 94: 1 – 14.en_US
dc.identifier.citedreferenceMaruyama S, Fujimoto N, Asano K, Ito A. Suppression by estrogen receptor beta of AP-1 mediated transactivation through estrogen receptor alpha. J Steroid Biochem Mol Biol 2001; 78: 177 – 84.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.