Show simple item record

Scotopic and Photopic Visual Thresholds and Spatial and Temporal Discrimination Evaluated by Behavior of Mice in a Water Maze †

dc.contributor.authorNathan, Janakien_US
dc.contributor.authorReh, Rebeccaen_US
dc.contributor.authorAnkoudinova, Irinaen_US
dc.contributor.authorAnkoudinova, Genieen_US
dc.contributor.authorChang, Boen_US
dc.contributor.authorHeckenlively, John R.en_US
dc.contributor.authorHurley, James B.en_US
dc.date.accessioned2010-06-01T22:44:17Z
dc.date.available2010-06-01T22:44:17Z
dc.date.issued2006-11en_US
dc.identifier.citationNathan, Janaki; Reh, Rebecca; Ankoudinova, Irina; Ankoudinova, Genie; Chang, Bo; Heckenlively, John; Hurley, James B. (2006). "Scotopic and Photopic Visual Thresholds and Spatial and Temporal Discrimination Evaluated by Behavior of Mice in a Water Maze † ." Photochemistry and Photobiology 82(6): 1489-1494. <http://hdl.handle.net/2027.42/75706>en_US
dc.identifier.issn0031-8655en_US
dc.identifier.issn1751-1097en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75706
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16683905&dopt=citationen_US
dc.description.abstractMethods that allow specific manipulations of the mouse genome have made it possible to alter specific aspects of photoreceptor function within the mouse retina. Mice with photoreceptors that have altered photosensitivities and altered photoresponse kinetics are now available. Methods are needed that can show how those perturbations in photoreceptor response characteristics translate into perturbations in visual sensitivity and perception. We have adapted a previously described method to evaluate visual threshold, spatial discrimination and temporal discrimination in mice swimming in a water maze. In this report we describe the sensitivities of rod-mediated and cone-mediated vision using GNAT1–/–and GNAT2–/– mice. Cone-mediated vision is ˜10000 times less sensitive than rod-mediated vision in mice. We also demonstrate that mice can distinguish striped from solid objects in the water maze and that they can distinguish flickering from continuous illumination.en_US
dc.format.extent666113 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2006 American Society for Photobiologyen_US
dc.titleScotopic and Photopic Visual Thresholds and Spatial and Temporal Discrimination Evaluated by Behavior of Mice in a Water Maze †en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumKellogg Eye Center, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationotherDepartment of Biochemistry, University of Washington, Seattle, WAen_US
dc.contributor.affiliationotherThe Jackson Laboratory, Bar Harbor, MEen_US
dc.identifier.pmid16683905en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75706/1/j.1751-1097.2006.tb09804.x.pdf
dc.identifier.doi10.1111/j.1751-1097.2006.tb09804.xen_US
dc.identifier.sourcePhotochemistry and Photobiologyen_US
dc.identifier.citedreferenceField, G. D., A. P. Sampath and F. Rieke ( 2004 ) Retinal processing near absolute threshold: From behavior to mechanism. Annu. Rev. Physiol. 67, 491 – 514.en_US
dc.identifier.citedreferenceNathans, J.. ( 1999 ) The evolution and physiology of human color vision: Insights from molecular genetic studies of visual pigments. Neuron 24, 299 – 312.en_US
dc.identifier.citedreferenceNishiguchi, K. M., M. A. Sandberg, A. C. Kooijman, K. A. Martemyanov, J. W. Pott, S. A. Hagstrom, V. Y. Arshavsky, E. L. Berson and T. P. Dryja ( 2004 ) Defects in RGS9 or its anchor protein R9AP in patients with slow photoreceptor deactivation. Nature 427, 75 – 78.en_US
dc.identifier.citedreferenceEaster, S. S., Jr. and G. N. Nicola ( 1996 ) The development of vision in the zebrafish ( Danio rerio ). Dev. Biol. 180, 646 – 663.en_US
dc.identifier.citedreferenceOrger, M. B., E. Gahtan, A. Muto, P. Page-McCaw, M. C. Smear and H. Baier ( 2004 ) Behavioral screening assays in zebrafish. Methods Cell Biol. 77, 53 – 68.en_US
dc.identifier.citedreferenceRinner, O., Y. V. Makhankov, O. Biehlmaier and S. C. Neuhauss ( 2005 ) Knockdown of cone-specific kinase GRK7 in larval zebrafish leads to impaired cone response recovery and delayed dark adaptation. Neuron 47, 231 – 242.en_US
dc.identifier.citedreferenceBrockerhoff, S. E., J. B. Hurley, U. Janssen-Bienhold, C. F. Neuhauss, W. Driever and J. E. Dowling ( 1995 ) A behavioral screen for isolating zebrafish mutants with visual system defects. Proc. Natl. Acad. Sci. USA 92, 10545 – 10549.en_US
dc.identifier.citedreferenceMuto, A., M. B. Orger, A. M. Wehman, M. C. Smear, J. N. Kay, P. S. Page-McCaw, E. Gahtan, T. Xiao, L. M. Nevin, N. J. Gosse, W. Staub, K. Finger-Baier and H. Baier ( 2005 ) Forward genetic analysis of visual behavior in zebrafish. PLoS Genet. 1, e66.en_US
dc.identifier.citedreferencePinto, L. H. and C. Enroth-Cugell ( 2000 ) Tests of the mouse visual system. Mamm. Genome 11, 531 – 536.en_US
dc.identifier.citedreferencePrusky, G. T., N. M. Alam, S. Beekman and R. M. Douglas ( 2004 ) Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest. Ophthalmol. Vis. Sci. 45, 4611 – 4616.en_US
dc.identifier.citedreferenceSchmucker, C., M. Seeliger, P. Humphries, M. Biel and F. Schaeffel ( 2005 ) Grating acuity at different luminances in wild-type mice and in mice lacking rod or cone function. Invest. Ophthalmol. Vis. Sci. 46, 398 – 407.en_US
dc.identifier.citedreferenceJacobs, G. H., J. C. Fenwick, J. B. Calderone and S. S. Deeb ( 1999 ) Human cone pigment expressed in transgenic mice yields altered vision. J. Neurosci. 19, 3258 – 3265.en_US
dc.identifier.citedreferenceJacobs, G. H., G. A. Williams and J. A. Fenwick ( 2004 ) Influence of cone pigment coexpression on spectral sensitivity and color vision in the mouse. Vision Res. 44, 1615 – 1622.en_US
dc.identifier.citedreferencePrusky, G. T., P. W. West and R. M. Douglas ( 2000 ) Behavioral assessment of visual acuity in mice and rats. Vision Res. 40, 2201 – 2209.en_US
dc.identifier.citedreferenceDouglas, R. M., N. M. Alam, B. D. Silver, T. J. McGill, W. W. Tschetter and G. T. Prusky ( 2005 ) Independent visual threshold measurements in the two eyes of freely moving rats and mice using a virtual-reality optokinetic system. Vis. Neurosci. 22, 677 – 684.en_US
dc.identifier.citedreferenceBalkema, G. W., N. J. Mangini and L. H. Pinto ( 1983 ) Discrete visual defects in pearl mutant mice. Science 219, 1085 – 1087.en_US
dc.identifier.citedreferenceHayes, J. M. and G. W. Balkema ( 1993 ) Elevated dark-adapted thresholds in hypopigmented mice measured with a water maze screening apparatus. Behav. Genet. 23, 395 – 403.en_US
dc.identifier.citedreferenceSampath, A. P., K. J. Strissel, R. Elias, V. Y. Arshavsky, J. F. McGinnis, J. Chen, S. Kawamura, F. Rieke and J. B. Hurley ( 2005 ) Recoverin improves rod-mediated vision by enhancing signal transmission in the mouse retina. Neuron 46, 413 – 420.en_US
dc.identifier.citedreferenceLerea, C. L., D. E. Somers, J. B. Hurley, I. B. Klock and A. H. Bunt-Milam ( 1986 ) Identification of specific transducin alpha subunits in retinal rod and cone photoreceptors. Science 234, 77 – 80.en_US
dc.identifier.citedreferenceLerea, C. L., A. H. Bunt-Milam and J. B. Hurley ( 1989 ) Alpha transducin is present in blue-, green-, and red-sensitive cone photoreceptors in the human retina. Neuron 3, 367 – 376.en_US
dc.identifier.citedreferenceCalvert, P. D., N. V. Krasnoperova, A. L. Lyubarsky, T. Isayama, M. Nicolo, B. Kosaras, G. Wong, K. S. Gannon, R. F. Margolskee, R. L. Sidman, E. N. Pugh, Jr., C. L. Makino and J. Lem ( 2000 ) Phototransduction in transgenic mice after targeted deletion of the rod transducin alpha-subunit. Proc. Natl. Acad. Sci. USA 97, 13913 – 13918.en_US
dc.identifier.citedreferenceTyler, C. W. and R. D. Hamer ( 1990 ) Analysis of visual modulation sensitivity. IV. Validity of the Ferry-Porter law. J. Opt. Soc. Am. A 7, 743 – 758.en_US
dc.identifier.citedreferenceBums, M. E. and D. A. Baylor ( 2001 ) Activation, deactivation, and adaptation in vertebrate photoreceptor cells. Annu. Rev. Neurosci. 24, 779 – 805.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.