Show simple item record

From Cell to Organism: A Predictive Multiscale Model of Drug Transport.

dc.contributor.authorZhang, Xinyuanen_US
dc.date.accessioned2010-06-03T15:40:58Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2010-06-03T15:40:58Z
dc.date.issued2010en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75872
dc.description.abstractOptimized pharmacokinetic properties of drug candidates are desired to be predicted as early as possible in drug discovery and development. Modeling and simulation have been continuously contributing to facilitating drug discovery and development. A cell-based pharmacokinetic model (1CellPK) was developed to mimic the transport of small molecules through a polarized epithelial cell. Passive transcellular permeability and subcellular distribution of small molecules are predicted by 1CellPK in the presence of an apical-to-basolateral concentration gradient. Input parameters include the physiological parameters of cells and physicochemical properties of small molecules. Basic principles applied in the model are mass conservation, Fick's law of diffusion, Henderson-Hasselbalch equation, and Nernst-Planck equation. Simulated permeability values showed good correlations with PAMPA, Caco-2, and intestinal permeability measurements for a dataset with thirty-six molecules. Together with a mathematical model that models subcellular localization of small molecules in a non-polarized cell, the cell based pharmacokinetic model could be used to analyze the transcellular permeability and subcellular accumulation in a non-target cell, and optimize distribution to the target site (i.e. cytosol, lysosomes, mitochondria, and extracellular space) in a target cell. To further validate 1CellPK and demonstrate how it can be used to generate quantitative hypotheses and guide experimental analyses, permeability and total intracellular mass accumulation were measured for a lysosomotropic compound, chloroquine, on MDCK cells. Predicted permeability agrees with observed permeability under various input conditions: adjusted pH values in the donor compartment, adjusted membranes with different size of pores, and various transport directions. However, for mass accumulation, 1CellPK model predicts only for a short time (5 minutes or less), suggesting other mechanisms are involved but not included in the current model for chloroquine uptake. 1CellPK model was further extended to a virtual lung model (the Cyberlung), and the Cyberlung was integrated into whole body physiologically-based pharmacokinetic (PBPK) models to predict lung distribution for three beta-blockers. 1CellPBPK predicted pharmacokinetics in the lung and other organs agrees well with observed data. Successful integration of a single-cell based Cyberlung model with a whole-body PBPK model constitutes an important step towards ab initio single-cell based predictive modeling of drug pharmacokinetics at the whole body level.en_US
dc.format.extent3081092 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectCellular Pharmacokineticsen_US
dc.subjectModeling and Simulationen_US
dc.subjectSubcellular Localizationen_US
dc.subjectPhysiologically-based Pharmacokinetic (PBPK) Modelingen_US
dc.subjectCell Permeabilityen_US
dc.subjectAbsorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET)en_US
dc.titleFrom Cell to Organism: A Predictive Multiscale Model of Drug Transport.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplinePharmaceutical Sciencesen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberRosania, Gustavoen_US
dc.contributor.committeememberAmidon, Gordon L.en_US
dc.contributor.committeememberSchwendeman, Steven P.en_US
dc.contributor.committeememberTakayama, Shuichien_US
dc.subject.hlbsecondlevelPharmacy and Pharmacologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75872/1/xinyuan_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.