Show simple item record

Chasing the Brightest Cosmic Explosions with ROTSE-III.

dc.contributor.authorYuan, Fangen_US
dc.date.accessioned2010-06-03T15:41:02Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2010-06-03T15:41:02Z
dc.date.issued2010en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75873
dc.description.abstractGamma-ray bursts (GRBs) and supernovae (SNe) are two of the most spectacular types of cosmic explosions in the transient sky. Both phenomena are associated with the death of massive stars or disruption of compact objects. Our knowledge of these events is thus closely related to the understanding of stellar evolution across the universe. These energetic events are also used as probes of the ionization and star formation history and powerful tools to measure the cosmic expansion. This thesis presents the follow-up observations of GRBs and the discoveries of SNe by the ROTSE-III robotic optical systems. With automated operation and fast slewing, ROTSE-III has made unique contributions to the study of GRBs by providing very early optical observations. A large fraction of ROTSE-III's burst responses started during the gamma-ray emission phase. These ``prompt'' optical detections and limits are invaluable for constraining the burst properties and the immediate environment surrounding the progenitor. I discuss examples of multi-wavelength studies of GRBs with an emphasize on the transition phase from the burst to the afterglow. The ROTSE Supernova Verification Project (RSVP) is an extension of the effort initiated by the Texas Supernova Search (TSS). By scanning a large portion of the sky nightly without bias towards bright galaxies, RSVP discovered over 40 SNe in about two years and a relatively large fraction of peculiar events. Among these, two SNe, 2008am and 2008es, belong to the ultra-luminous type that was not known before TSS and one event, 2007if, was an over-luminous Type Ia SN and a candidate for a super-Chandrasekhar mass explosion. With ROTSE-III, we hope to discover and monitor more ultra-luminous SNe to understand their extraordinary energy output, whether they are powered by ejecta-circumstellar medium interactions or thermonuclear reactions triggered by pair instability. In the case of SNe Ia, it is not likely that a single parameter, e.g. the amount of radioactive nickel produced, is able to account for their diversity. Circumstellar medium interaction, as a probable source of excess luminosity, is investigated.en_US
dc.format.extent7899793 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectGamma-ray Bursten_US
dc.subjectSupernovaen_US
dc.subjectRobotic Telescopeen_US
dc.subjectTransient Surveyen_US
dc.titleChasing the Brightest Cosmic Explosions with ROTSE-III.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplinePhysicsen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberAkerlof, Carl W.en_US
dc.contributor.committeememberAdams, Fred C.en_US
dc.contributor.committeememberMcKay, Timothy A.en_US
dc.contributor.committeememberMiller, Jon Matthewen_US
dc.contributor.committeememberZhou, Bingen_US
dc.subject.hlbsecondlevelAstronomyen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75873/1/yuanfang_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.