Show simple item record

Exploration and Exploitation of Action Selection in the Motor Cortex and Basal Ganglia.

dc.contributor.authorGage, Gregory J.en_US
dc.date.accessioned2010-06-03T15:41:59Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2010-06-03T15:41:59Z
dc.date.issued2010en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75885
dc.description.abstractThe basal ganglia (BG) have been proposed as a possible neural substrate for action selection in the vertebrate brain. In this thesis, I have focused on determining the role of BG circuits in selection of well-trained actions, and how these findings can be applied for use in neuroprosthetic devices. In the first study, I investigated one proposed mechanism to help resolve competition between actions in the BG: feedforward inhibition of striatal medium spiny cells (MSNs) by fast-spiking interneurons (FSIs). I recorded single unit activity from pre- sumed MSNs and FSIs together with motor cortex and globus pallidus (GP), in rats performing a simple choice task. My findings support the idea that FSIs contribute to action selection processes within striatal microcircuits. In my second study, I examined the role of large neuronal ensembles of the BG and motor cortex during two variations on a simple action selection task. Analysis of local field potential (LFP) oscillations revealed that ∼20Hz rhythms (β20) were prominent during the hold period, but only if subjects were instructed on which direction to move during the hold period. This finding is consistent with the hypothesis that β20 is involved with the selection of actions. In the third study, I examined how action selection circuitry can be exploited to aid in the development of a neuroprosthetic system. By bypassing injured neurons, we can allow for direct motor control from non-injured neurons. I developed an algorithm that observes the pattern of activity in cortical ensembles and allows both the subjects and control system to co-adapt their behavior to allow na ̈ıve rats to use a neuroprosthetic device. The results of this study show that subjects can learn to select discrete actions in real-time using the neural activity of the cortex. In this thesis, I investigated action selection at the single-unit and multi-unit levels, while studying neural ensembles both within and across brain structures. Further knowledge in this field will help solve neurological diseases and yield more sophisticated, yet more natural control of neuroprosthetic devices which will rely on native BG and cortical roles in action selection.en_US
dc.format.extent26527263 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/octet-stream
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectAction Selectionen_US
dc.subjectElectrophysiologyen_US
dc.subjectBMIen_US
dc.subjectInterneuronsen_US
dc.subjectStriatumen_US
dc.subjectMotor Cortexen_US
dc.titleExploration and Exploitation of Action Selection in the Motor Cortex and Basal Ganglia.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineBiomedical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberBerke, Joshua Damienen_US
dc.contributor.committeememberKipke, Darylen_US
dc.contributor.committeememberAnderson, David J.en_US
dc.contributor.committeememberIonides, Edward L.en_US
dc.subject.hlbsecondlevelBiomedical Engineeringen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75885/1/gagegreg_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.