Show simple item record

Direct Measurement of Mammalian Axonemal Dynein's Motor Activity.

dc.contributor.authorLorch, David P.en_US
dc.date.accessioned2010-06-03T15:45:44Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2010-06-03T15:45:44Z
dc.date.issued2010en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75936
dc.description.abstractFlagella and cilia play critical roles in mammalian and other eukaryotic life by providing propulsion for swimming cells and moving fluids across tissue surfaces. Flagellar/ciliary bending is caused by the sliding of doublet microtubules (MTs) past each other due to a molecular motor called dynein attached to one doublet MT (dMT) “walking” along an adjacent dMT. Due to dMTs being fixed at the same end, this translocation produces a bend in the whole structure. While it is clear how the dynein molecules cause a bending of the dMTs, the mechanism underlying the generation of propagated waves of flagellar/ciliary motion has yet to be fully understood, especially with regard to the magnitude and regulation of the forces produced by dynein. Several outside studies have shown that some of dynein's mechanical properties such as velocity of MT gliding and force generation seem to be regulated by its multiple nucleotide binding sites. To better understand dynein’s role in coordinated flagellar motion, we developed two in situ assays: one in which polymerized MTs glide along dMTs extruded from disintegrated bovine sperm flagella and an optical tweezers assay which is identical in geometry and environment except the MT is held in an optical trap to measure displacements and forces rather than velocities. The exposed, active dynein in each assay remain attached to their respective dMTs, allowing translocation of single MTs to be observed in an environment with direct control of chemical conditions. In the gliding assay, translocation of MTs by dynein exhibits Michaelis-Menten type kinetics, with Vmax = 4.7 ± 0.2 μm/sec and Km = 124 ± 11 μM. The character of MT translocation is variable, including smooth gliding, stuttered motility, oscillations, buckling, complete dissociation from the dMT, and occasionally movements reversed from the physiologic direction. The gliding velocity is independent of the number of dynein motors present and shows no indication of increased activity due to ADP regulation. In the optical tweezers assay, average force was found to be independent of [ATP] and [ADP] and distances of dynein’s excursions indicates non-processivity. These combined results reveal dynein’s motor activity, individually and cooperatively, within mammalian flagella.en_US
dc.format.extent1127367 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/octet-stream
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectDyneinen_US
dc.subjectOptical Tweezersen_US
dc.titleDirect Measurement of Mammalian Axonemal Dynein's Motor Activity.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineBiomedical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberHunt, Alan J.en_US
dc.contributor.committeememberLindemann, Charles Bernarden_US
dc.contributor.committeememberMeyhofer, Edgaren_US
dc.contributor.committeememberTakayama, Shuichien_US
dc.subject.hlbsecondlevelBiomedical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75936/1/dlorch_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.