Show simple item record

The Deformation Response of 3D Woven Composites Subjected to High Rates of Loading.

dc.contributor.authorPankow, Mark Roberten_US
dc.date.accessioned2010-08-27T15:21:52Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2010-08-27T15:21:52Z
dc.date.issued2010en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/77889
dc.description.abstractThe use of polymer matrix composites is widespread, with development in automotive, aerospace and recreational equipment. These applications have produced loading scenarios which are unfamiliar and not well understood. Several applications involve impact loading, which produces large strain rates and delamination failure. New manufacturing methods have led to 3D weave geometries that provide composites with damage protection. This is accomplished through elimination of delamination, and localizing the extent of damage. The present work is a combined experimental and computational study aimed at developing a mechanism based deformation response model for 3D woven composites, including the prediction of failure strengths at high loading rates. Three unique experimental configurations have been developed; along with finite element based simulations to predict the material response and failure mechanisms that are experimentally observed. End Notch Flexure (ENF) tests were used to determine the effectiveness of the Z-fiber at resisting crack propagation. The crack propagation was found to have rate dependent properties, with architecture based parameters required to predict the strength and resistance. The computational results reinforced the experimental observations. A new FE implementation captured the effectiveness of the Z-fiber reinforcement bridging the crack. Shock impact testing was performed to simulate the effects of blast loading on the material. New experimental methods were utilized to record the deformations and strains which led to observations of matrix micro-cracking, the first failure mode. Computational models were developed to predict the material behavior subjected to shock loading, including matrix micro-cracking, which was predicted accurately. Finally, split Hopkinson pressure bar (SHPB) testing was done to understand the high strain rate behavior of the material in compression in all three directions. The warp and weft directions showed an increase in strength of 100% at elevated rates and a transition in failure mode, from kink band formation to delamination. Through-the-thickness testing revealed a small increase in load from rate effects and a transition in failure mode from delamination to shear band formation. Computational models focused on analyzing a representative unit cell of the 3D architecture. Simulations of the SHPB tests, led to predictions of the moduli, failure loads and failure modes accurately.en_US
dc.format.extent43441685 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subject3D Woven Compositesen_US
dc.subjectHigh Strain Rateen_US
dc.subjectBlast Loadingen_US
dc.subjectHopkinson Baren_US
dc.subjectCrack Propagationen_US
dc.titleThe Deformation Response of 3D Woven Composites Subjected to High Rates of Loading.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineMechanical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberWaas, Anthony M.en_US
dc.contributor.committeememberHollister, Scott J.en_US
dc.contributor.committeememberJones, J. Wayneen_US
dc.contributor.committeememberWineman, Alan S.en_US
dc.contributor.committeememberYen, Chian-Fongen_US
dc.subject.hlbsecondlevelMechanical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/77889/1/mpankow_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.