Show simple item record

The Effects of Designed Scaffold Architecture and Biodegradable Material on Chondrogenesis in vitro and in vivo.

dc.contributor.authorJeong, Gayoung Claireen_US
dc.date.accessioned2010-08-27T15:42:22Z
dc.date.available2010-08-27T15:42:22Z
dc.date.issued2010en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/77932
dc.description.abstractPoly (1, 8-octanediol-co-citric acid) (POC) is a synthetic biodegradable biocompatible elastomer that can be processed by solid freeform fabrication into 3D scaffolds for cartilage tissue engineering. We investigated the effect of designed porosity on the mechanical properties, permeability, and degradation profiles of the POC scaffolds. Increased porosity was associated with increased degradation rate, increased permeability, and decreased mechanical stiffness that also became less nonlinear. One goal of this work was to examine the effects of pore shape and permeability of two different POC scaffold designs on matrix production, mRNA gene expression, and differentiation of chondrocytes in both in vitro and in vivo models and the consequent mechanical property changes of the scaffold/tissue constructs. We also examined the effects of collagen I gel concentration on chondrogenesis as a cell carrier and found that a lower collagen gel concentration provides a favorable microenvironment for chondrocytes. With regards to scaffold design, low permeability with a spherical pore shape better enhanced the chondrogenic performance of chondrocytes in terms of matrix production, cell phenotype, and mRNA gene expression in vitro and in vivo compared to the highly permeable scaffold with a cubical pore shape. There were higher mRNA expressions for cartilage specific proteins and matrix degradation proteins in the high permeable design in vivo, resulting in overall less sGAG retained in the high permeable scaffold compared with the low permeable scaffold. In order to determine the scaffold material effects on cartilage regeneration, three dimensional polycaprolactone (PCL), poly (glycerol sebacate) (PGS), and POC scaffolds of the same design were physically characterized and tissue regeneration was compared to find which material would be most optimal for cartilage regeneration in vitro. POC provided the best support for cartilage regeneration while PGS was seen as the least favorable material based on mRNA expressions. PCL still provided microenvironments suitable for chondrocytes to be active, yet it seemed to cause de-differentiation of chondrocytes inside the scaffold while growing cartilage outside the scaffold. Scaffold architectures and materials characterization and analysis in this work will provide design guidance for scaffolds to meet the mechanical and biological parameters needed for cartilage regeneration.en_US
dc.format.extent3605625 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectCartilage Regenerationen_US
dc.subjectScaffold Materialsen_US
dc.subjectTissue Engineeringen_US
dc.subjectScaffold Architecturesen_US
dc.titleThe Effects of Designed Scaffold Architecture and Biodegradable Material on Chondrogenesis in vitro and in vivo.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineBiomedical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberHollister, Scott J.en_US
dc.contributor.committeememberBedi, Asheeshen_US
dc.contributor.committeememberKrebsbach, Paulen_US
dc.contributor.committeememberRoessler, Blake J.en_US
dc.subject.hlbsecondlevelBiomedical Engineeringen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/77932/1/gjeong_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.