Show simple item record

Optical Response and Control of Molecular Systems.

dc.contributor.authorMcRobbie, Porscha Louiseen_US
dc.date.accessioned2011-01-18T16:17:38Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2011-01-18T16:17:38Z
dc.date.issued2010en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/78900
dc.description.abstractThis thesis is comprised of three major parts and is concerned with the theoretical characterization of condensed phase systems within the framework of nonlinear spectroscopy experiments, using both analytical models and numerical approximation schemes. The first part focuses on the chirped-pulse mediated coherent control of electronic population transfer, and investigates the plausibility of control in the presence of pure electronic dephasing. The molecular system is described by a same-frequency shifted harmonic oscillator model, and population transfer was computed using split-operator and direct diagonalization schemes. Dephasing effects were incorporated using a stochastic model that is able to interpolate between the homogeneous and inhomogeneous limits, and results with and without dephasing were compared as functions of the linear chirp parameter and the field intensity. The numerical findings were compared to and found to be consistent with several experimental studies performed on the laser dye LD690 in liquid methanol. The second part is a comparative study of several approximation methods used for computing optical response functions, and is illustrated within the context of two-dimensional electronic spectroscopy. A central theme is the development of a benchmark model that can discriminate between different methods, and consists of a different-frequency shifted harmonic oscillator model. Optical response spectra were computed using four different approximation schemes, which include two distinctly different second-order cumulant approximations, a Linearized Semiclassical method, and a Forward-Backward Semiclassical method. Comparing the spectra as a function of temperature and the oscillator frequency ratio assessed the accuracy and robustness of the methods. The final part concerned a method for computing ab initio optical response tensors in the context of two-dimensional infrared spectroscopy, and was a collaborative effort between the Geva and Kubarych groups. An excitonic Hamiltonian was used to model the photo-active modes of a vibrational system, and a direct diagonalization procedure, which utilized inputs from electronic structure calculations, was used to compute the spectra. Preliminary results for the four-mode system Mn(CO)5 are presented, and the methodology developed here was later continued and extended by other members of the collaboration.en_US
dc.format.extent4668766 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectOptical Response, Coherent Control, Condensed Phase Quantum Dynamicsen_US
dc.titleOptical Response and Control of Molecular Systems.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplinePhysicsen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberGeva, Eitanen_US
dc.contributor.committeememberSension, Roseanne J.en_US
dc.contributor.committeememberDuan, Lumingen_US
dc.contributor.committeememberKubarych, Kevin J.en_US
dc.contributor.committeememberOgilvie, Jennifer P.en_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78900/1/pmcrobbi_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.