JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantum Superposition, Mass, and General Relativity

Nikkhah Shirazi, Armin

Nikkhah Shirazi, Armin

2011-04-01

Abstract: The quantum superposition principle, which expresses the idea that a system can exist simultaneously in two or more mutually exclusive states is at the heart of the mystery of quantum mechanics. This paper presents an axiom, called the principle of actualizable histories, which naturally leads to the quantum superposition principle. However, in order to be applicable to massive systems, it requires introducing a novel distinction between actualizable and actual mass. By means of arriving in conjunction with two previously introduced axioms at the path integral formulation of quantum mechanics, it is shown that actualizable mass is the central concept of mass in quantum theory, whereas actual mass is the central concept in classical theories, and in particular general relativity. This distinction sharply segregates the domains of validity of the two theories, making it incompatible with any theory of quantum gravity which does not respect this segregation. Finally, an experiment is suggested to test this idea.