Show simple item record

A dual-time implicit preconditioned Navier-Stokes method for solving 2D steady/unsteady laminar cavitating/noncavitating flows using a Barotropic model

dc.contributor.authorHejranfar, K.en_US
dc.contributor.authorEzzatneshan, E.en_US
dc.contributor.authorHesary, K.en_US
dc.date.accessioned2011-05-26T17:39:57Z
dc.date.available2011-05-26T17:39:57Z
dc.date.issued2009-08en_US
dc.identifierCAV2009-138en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/84312en_US
dc.description.abstractA two-dimensional, time-accurate, homogeneous multiphase, preconditioned Navier-Stokes method is applied to solve steady and unsteady cavitating laminar flows over 2D hydrofoils. A cell-centered finite-volume scheme employing the suitable dissipation terms to account for density jumps across the cavity interface is shown to yield an effective method for solving the multiphase Navier-Stokes equations. This numerical resolution is coupled to a single-fluid model of cavitation that the evolution of the density is governed by a barotropic sate law. A preconditioning strategy is used to prevent the system of equations to be stiff. A dual-time implicit procedure is applied for time accurate computation of unsteady cavitating flows. A sensitivity study is conducted to evaluate the effects of various parameters such as numerical dissipation coefficients and preconditioning on the accuracy and performance of the solution. The computations are presented for steady and unsteady laminar cavitating flows around the NACA0012 hydrofoil for different conditions. The solution procedure presented is shown to be accurate and efficient for predicting steady/unsteady laminar cavitating/noncavitating flows over 2D hydrofoils.en_US
dc.relation.ispartofseriesCAV2009 - 7th International Symposium on Cavitation, 16-20 August 2009, Ann Arbor, MIen_US
dc.titleA dual-time implicit preconditioned Navier-Stokes method for solving 2D steady/unsteady laminar cavitating/noncavitating flows using a Barotropic modelen_US
dc.typeArticleen_US
dc.contributor.affiliationotherSharif University of Technology, Tehran, Iran; Sharif University of Technology, Tehran, Iran; Sharif University of Technology, Tehran, Iranen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/84312/1/CAV2009-final138.pdf
dc.owningcollnameMechanical Engineering, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.