Hybrid Poissoflolynomial Objective Functions for Tomographic Image Reconstruction from Transmission Scans
dc.contributor.author | Fessler, Jeffrey A. | en_US |
dc.date.accessioned | 2011-08-18T18:21:23Z | |
dc.date.available | 2011-08-18T18:21:23Z | |
dc.date.issued | 1995-10 | en_US |
dc.identifier.citation | Fessler, Jeffrey A. (1995). "Hybrid Poissoflolynomial Objective Functions for Tomographic Image Reconstruction from Transmission Scans". IEEE Transactions on Image Processing 4(10): 1439-1450. <http://hdl.handle.net/2027.42/86023> | en_US |
dc.identifier.issn | 1057-7149 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/86023 | |
dc.description.abstract | This paper describes rapidly converging algorithms for computing attenuation maps from Poisson transmission measurements using penalized-likelihood objective functions. We demonstrate that an under-relaxed cyclic coordinate-ascent algorithm converges faster than the convex algorithm of Lange (see ibid., vol.4, no.10, p.1430-1438, 1995), which in turn converges faster than the expectation-maximization (EM) algorithm for transmission tomography. To further reduce computation, one could replace the log-likelihood objective with a quadratic approximation. However, we show with simulations and analysis that the quadratic objective function leads to biased estimates for low-count measurements. Therefore we introduce hybrid Poisson/polynomial objective functions that use the exact Poisson log-likelihood for detector measurements with low counts, but use computationally efficient quadratic or cubic approximations for the high-count detector measurements. We demonstrate that the hybrid objective functions reduce computation time without increasing estimation bias. | en_US |
dc.publisher | IEEE | en_US |
dc.title | Hybrid Poissoflolynomial Objective Functions for Tomographic Image Reconstruction from Transmission Scans | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Biomedical Engineering | en_US |
dc.subject.hlbtoplevel | Engineering | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.identifier.pmid | 18291975 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/86023/1/Fessler100.pdf | |
dc.identifier.doi | 10.1109/83.465108 | en_US |
dc.identifier.source | IEEE Transactions on Image Processing | en_US |
dc.owningcollname | Electrical Engineering and Computer Science, Department of (EECS) |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.