Show simple item record

Automatic Tuning of Digital Circuits.

dc.contributor.authorLiu, Nurrachman Chih Yehen_US
dc.date.accessioned2011-09-15T17:12:41Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2011-09-15T17:12:41Z
dc.date.issued2011en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/86390
dc.description.abstractVariation in transistors is increasing as process technology transistor dimensions shrink. Compounded with lowering supply voltage, this increased variation presents new challenges for the circuit designer. However, this variation also brings many new opportunities for the circuit designer to leverage as well. We present a time-to-digital converter embedded inside a 64-bit processor core, for direct monitoring of on-chip critical paths. This path monitoring allows the processor to monitor process variation and run-time variations. By adjusting to both static and dynamic operating conditions the impact of variations can be reduced. The time-to-digital converter achieves high-resolution measurement in the picosecond range, due to self-calibration via a self-feedback mode. This system is implemented in 45nm silicon and measured silicon results are shown. We also examine techniques for enhanced variation-tolerance in subthreshold digital circuits, applying these to a high fan-in, self-timed transition detection circuit that, due to its self-timing, is able to fully compensate for the large variation in subthreshold. In addition to mitigating variations we also leverage them for random number generation. We demonstrate that the randomness inherent in the oxide breakdown process can be extracted and applied for the specific applications of on-chip ID generation and on-chip true random number generation. By using dynamic automated self-calibrating algorithms that tune and control the on-chip circuitry, we are able to achieve extremely high-quality results. The two systems are implemented in 65 nm silicon. Measured results for the on-chip ID system, called OxID, show a high-degree of randomness and read-stability in the generated IDs, both primary prerequisites of a high-quality on-chip ID system. Measured results for the true random number generator, called OxiGen, show an exceptionally high degree of randomness, passing all fifteen NIST 800-22 tests for randomness with statistical significance and without the aid of a post-processor.en_US
dc.language.isoen_USen_US
dc.subjectVariation Monitoring Circuitsen_US
dc.subjectIn-situ Circuitsen_US
dc.subjectVariation Adaptive Circuitsen_US
dc.subjectLow-power Digital Circuitsen_US
dc.subjectSelf-tuning Circuitsen_US
dc.subjectAutomatic Calibration of Circuitsen_US
dc.titleAutomatic Tuning of Digital Circuits.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineElectrical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberBlaauw, Daviden_US
dc.contributor.committeememberCutler, James W.en_US
dc.contributor.committeememberSylvester, Dennis Michaelen_US
dc.contributor.committeememberZhang, Zhengyaen_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86390/1/rachliu_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.