Targeting the X for Chromosome-Wide Gene Regulation.
dc.contributor.author | Petty, Emily L. | en_US |
dc.date.accessioned | 2011-09-15T17:21:46Z | |
dc.date.available | 2011-09-15T17:21:46Z | |
dc.date.issued | 2011 | en_US |
dc.date.submitted | en_US | |
dc.identifier.uri | https://hdl.handle.net/2027.42/86556 | |
dc.description.abstract | Dosage compensation is an essential gene regulation mechanism that balances X-linked gene expression in organisms that utilize a chromosome-based sex determination strategy. The mechanisms of dosage compensation that have been studied all involve specialized gene regulatory machineries that specifically localize to and function on the dosage compensated chromosome(s). In C. elegans, this machinery is called the Dosage Compensation Complex (DCC) and it balances X linked gene expression between XX hermaphrodites and XO males by binding the two hermaphrodite X chromosomes to reduce expression two-fold. The goal of my thesis is to address the gap in our understanding of how the initial targeting of the DCC to the X chromosomes is achieved. In this work I have examined the requirements within a sub-complex of the DCC, Condensin IDC, for X chromosome localization and contributed to our understanding of Condensin I localization in mitosis and meiosis. I have also provided the first evidence that chromatin, specifically the histone variant H2A.Z/HTZ-1 contributes to DCC targeting. Finally, I have demonstrated that the DCC regulatory subunit, DPY-30, functions in dosage compensation in a manner that is completely independent of its role in H3K4 methyltransferase complexes. Together, this work serves as the first investigation on the role of chromatin in targeting the DCC to the X chromosomes in C. elegans and serves as an example of how chromatin organization functions in eukaryotic gene regulation. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Gene Regulation | en_US |
dc.subject | Chromatin | en_US |
dc.subject | Dosage Compensation | en_US |
dc.title | Targeting the X for Chromosome-Wide Gene Regulation. | en_US |
dc.type | Thesis | en_US |
dc.description.thesisdegreename | PhD | en_US |
dc.description.thesisdegreediscipline | Molecular, Cellular, and Developmental Biology | en_US |
dc.description.thesisdegreegrantor | University of Michigan, Horace H. Rackham School of Graduate Studies | en_US |
dc.contributor.committeemember | Csankovszki, Gyorgyi | en_US |
dc.contributor.committeemember | Cadigan, Kenneth M. | en_US |
dc.contributor.committeemember | Clark, Steven E. | en_US |
dc.contributor.committeemember | Dou, Yali | en_US |
dc.subject.hlbsecondlevel | Molecular, Cellular and Developmental Biology | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/86556/1/emilynnp_1.pdf | |
dc.owningcollname | Dissertations and Theses (Ph.D. and Master's) |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.