Show simple item record

Temperature and Pressure Dependences of the Laser-Induced Fluorescence of Gas-Phase Acetone and 3-Pentanone

dc.contributor.authorGroßmann, F.en_US
dc.contributor.authorMonkhouse, P. B.en_US
dc.contributor.authorRidder, M.en_US
dc.contributor.authorSick, Volkeren_US
dc.contributor.authorWolfrum, Jürgenen_US
dc.date.accessioned2011-11-07T18:55:10Z
dc.date.available2011-11-07T18:55:10Z
dc.date.issued1996en_US
dc.identifier.citationGroßmann, F.; Monkhouse, P. B.; Ridder, M.; Sick, V.; Wolfrum, J. (1996). "Temperature and Pressure Dependences of the Laser-Induced Fluorescence of Gas-Phase Acetone and 3-Pentanone." Applied Physics B 62(3): 249-253. <http://hdl.handle.net/2027.42/86780>en_US
dc.identifier.issn0946-2171en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/86780
dc.description.abstractLaser-Induced Fluorescence (LIF) from the S1 state of acetone and 3-pentanone was studied as a function of temperature and pressure using excitation at 248 nm. Additionally, LIF of 3-pentanone was investigated using 277 and 312 nm excitation. Added gases were synthetic air, O2, and N2 respectively, in the range 0–50 bar. At 383 K and for excitation at 248 nm, all the chosen collision partners gave an initial enhancement in fluorescence intensity with added gas pressure. Thereafter, the signal intensity remained constant for N2 but decreased markedly for O2. For synthetic air, only a small decrease occurred beyond 25 bar. At longer excitation wavelengths (277 and 312 nm), the corresponding initial rise in signal with synthetic air pressure was less than that for 248 nm. The temperature dependence of the fluorescence intensity was determined in the range 383–640 K at a constant pressure of 1 bar synthetic air. For 248 nm excitation, a marked fall in the fluorescence signal was observed, whereas for 277 nm excitation the corresponding decrease was only half as strong. By contrast, exciting 3-pentanone at 312 nm, the signal intensity increased markedly in the same temperature range. These results are consistent with the observation of a red shift of the absorption spectra (9 nm) over this temperature range. Essentially, the same temperature dependence was obtained at 10 and 20 bar pressure of synthetic air. It is demonstrated that temperatures can be determined from the relative fluorescence intensities following excitation of 3-pentanone at 248 and 312 nm, respectively. This new approach could be of interest as a non-intrusive thermometry method, e.g., for the compression phase in combustion engines.en_US
dc.publisherSpringeren_US
dc.titleTemperature and Pressure Dependences of the Laser-Induced Fluorescence of Gas-Phase Acetone and 3-Pentanoneen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMechanical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mechanical Engineeringen_US
dc.contributor.affiliationotherPhysikalisch-Chemisches Institut, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germanyen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86780/1/Sick44.pdf
dc.identifier.doi10.1007/BF01080952en_US
dc.identifier.sourceApplied Physics Ben_US
dc.owningcollnameMechanical Engineering, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.