Show simple item record

Effect of anorganic bovine bone to autogenous cortical bone ratio upon bone remodeling patterns following maxillary sinus augmentation

dc.contributor.authorGalindo‐Moreno, Pabloen_US
dc.contributor.authorMoreno‐Riestra, Ildefonsoen_US
dc.contributor.authorAvila, Gustavoen_US
dc.contributor.authorPadial‐Molina, Miguelen_US
dc.contributor.authorPaya, Jorge A.en_US
dc.contributor.authorWang, Hom‐layen_US
dc.contributor.authorO'Valle, Franciscoen_US
dc.date.accessioned2011-11-10T15:31:00Z
dc.date.available2012-10-01T18:34:13Zen_US
dc.date.issued2011-08en_US
dc.identifier.citationGalindo‐moreno, Pablo ; Moreno‐riestra, Ildefonso ; Avila, Gustavo; Padial‐molina, Miguel ; Paya, Jorge A.; Wang, Hom‐lay ; O'Valle, Francisco (2011). "Effect of anorganic bovine bone to autogenous cortical bone ratio upon bone remodeling patterns following maxillary sinus augmentation." Clinical Oral Implants Research 22(8). <http://hdl.handle.net/2027.42/86802>en_US
dc.identifier.issn0905-7161en_US
dc.identifier.issn1600-0501en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/86802
dc.description.abstractIntroduction: Maxillary sinus augmentation is a predictable implant site development technique, although several local and systemic factors may influence outcomes. The aim of this study was to evaluate healing patterns and bone remodeling activity following the use of two different graft mixtures for maxillary sinus augmentation. Materials and methods: Patients in need of maxillary sinus augmentation were randomly assigned to two different groups. A graft mixture using a 50% autologous bone (AB) to 50% anorganic bovine bone (ABB) ratio was used in group 1, while a 20% AB to 80% ABB ratio was utilized for group 2. After a 6‐month healing period, bone core biopsies were harvested for histological, histomorphometrical, and immunohistochemical analyses. Results: Twenty‐eight subjects participated in this study. No statistically significant differences were found between groups in regards to vital bone and non‐mineralized tissue proportions. Higher number of osteoid lines (18.05 ± 10.06 in group 1 vs. 9.01 ± 7.53 in group 2; P =0.023) and higher cellularity, particularly regarding the number of osteocytes (631.85 ± 607.98 in group 1 vs. 219.08 ± 103.26 in group 2; P =0.002), were observed in specimens from group 1. Differences in expression patterns of osteopontin and tartrate‐resistant acid phosphatase were also detected between groups. Conclusion: AB to ABB ratio appears to influence bone remodeling patterns and cell content following maxillary sinus augmentation procedures. Similar proportion of vital bone was found in specimens obtained from both groups. More cellular presence was observed in samples containing higher proportions of AB. To cite this article: 
Galindo‐Moreno P, Moreno‐Riestra I, Avila G, Padial‐Molina M, Paya JA, Wang H‐L, O'Valle F. Effect of anorganic bovine bone to autogenous cortical bone ratio upon bone remodeling patterns following maxillary sinus augmentation.
 Clin. Oral Impl. Res . 22 , 2011; 857–864.
doi: 10.1111/j.1600‐0501.2010.02073.xen_US
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherBone Graftingen_US
dc.subject.otherBone Remodelingen_US
dc.subject.otherDental Implantsen_US
dc.subject.otherMaxillary Sinusen_US
dc.subject.otherOsteopontinen_US
dc.subject.otherTRAP‐1 Proteinen_US
dc.titleEffect of anorganic bovine bone to autogenous cortical bone ratio upon bone remodeling patterns following maxillary sinus augmentationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelDentistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherOral Surgery and Implant Dentistry Department, School of Dentistry, University of Granada, Granada, Spainen_US
dc.contributor.affiliationotherDepartment of Pathology and IBIMER, School of Medicine, University of Granada, Granada, Spainen_US
dc.identifier.pmid21244500en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86802/1/j.1600-0501.2010.02073.x.pdf
dc.identifier.doi10.1111/j.1600-0501.2010.02073.xen_US
dc.identifier.sourceClinical Oral Implants Researchen_US
dc.identifier.citedreferenceBonewald, L. ( 2006 ) Osteocytes as multifunctional cells. Journal of Musculoskeletal and Neuronal Interactions 6: 331 – 333.en_US
dc.identifier.citedreferenceBoyne, P.J. & James, R.A. ( 1980 ) Grafting of the maxillary sinus floor with autogenous marrow and bone. Journal of Oral Surgery 38: 613 – 616.en_US
dc.identifier.citedreferenceBrowaeys, H., Bouvry, P. & De Bruyn, H. ( 2007 ) A literature review on biomaterials in sinus augmentation procedures. Clinical Implant Dentistry & Related Research 9: 166 – 177.en_US
dc.identifier.citedreferenceDel Fabbro, M., Testori, T., Francetti, L. & Weinstein, R. ( 2004 ) Systematic review of survival rates for implants placed in the grafted maxillary sinus. The International Journal of Periodontics & Restorative Dentistry 24: 565 – 577.en_US
dc.identifier.citedreferenceDuong, L.T. & Rodan, G.A. ( 1999 ) The role of integrins in osteoclast function. Journal of Bone and Mineral Metabolism 17: 1 – 6.en_US
dc.identifier.citedreferenceEk‐Rylander, B. & Andersson, G. ( 2009 ) Osteoclast migration on phosphorylated osteopontin is regulated by endogenous tartrate‐resistant acid phosphatase. Experimental Cell Research 316: 443 – 465.en_US
dc.identifier.citedreferenceFerreira, C.E., Novaes, A.B., Haraszthy, V.I., Bittencourt, M., Martinelli, C.B. & Luczyszyn, S.M. ( 2009 ) A clinical study of 406 sinus augmentations with 100% anorganic bovine bone. Journal of Periodontology 80: 1920 – 1927.en_US
dc.identifier.citedreferenceGalindo‐Moreno, P., Avila, G., Fernandez‐Barbero, J.E., Aguilar, M., Sanchez‐Fernandez, E., Cutando, A. & Wang, H.L. ( 2007 ) Evaluation of sinus floor elevation using a composite bone graft mixture. Clinical Oral Implants Research 18: 376 – 382.en_US
dc.identifier.citedreferenceGalindo‐Moreno, P., Avila, G., Fernandez‐Barbero, J.E., Mesa, F., O'Valle‐Ravassa, F. & Wang, H.L. ( 2008 ) Clinical and histologic comparison of two different composite grafts for sinus augmentation: a pilot clinical trial. Clinical Oral Implants Research 19: 755 – 759.en_US
dc.identifier.citedreferenceGalindo‐Moreno, P., Fauri, M., Avila‐Ortiz, G., Fernandez‐Barbero, J.E., Cabrera‐Leon, A. & Sanchez‐Fernandez, E. ( 2005 ) Influence of alcohol and tobacco habits on peri‐implant marginal bone loss: a prospective study. Clinical Oral Implants Research 16: 579 – 586.en_US
dc.identifier.citedreferenceGalindo‐Moreno, P., Moreno‐Riestra, I., Avila, G., Fernandez‐Barbero, J.E., Mesa, F., Aguilar, M., Wang, H.L. & O'Valle, F. ( 2010a ) Histomorphometric comparison of maxillary pristine bone and composite bone graft biopsies obtained after sinus augmentation. Clinical Oral Implants Research 21: 122 – 128.en_US
dc.identifier.citedreferenceGalindo‐Moreno, P., Padial‐Molina, M., Fernandez‐Barbero, J.E., Mesa, F., Rodríguez‐Martínez, D. & O'Valle, F. ( 2010b ) Optimal microvessel density from composite graft of autogenous maxillary cortical bone and anorganic bovine bone in sinus augmentation: influence of clinical variables. Clinical Oral Implants Research 21: 221 – 227.en_US
dc.identifier.citedreferenceGanss, B., Kim, R.H. & Sodek, J. ( 1999 ) Bone sialoprotein. Critical Reviews in Oral Biology and Medicine 10: 79 – 98.en_US
dc.identifier.citedreferenceHaas, R., Donath, K., Fodinger, M. & Watzek, G. ( 1998 ) Bovine hydroxyapatite for maxillary sinus grafting: comparative histomorphometric findings in sheep. Clinical Oral Implants Research 9: 107 – 116.en_US
dc.identifier.citedreferenceHallman, M., Hedin, M., Sennerby, L. & Lundgren, S. ( 2002a ) A prospective 1‐year clinical and radiographic study of implants placed after maxillary sinus floor augmentation with bovine hydroxyapatite and autogenous bone. The International Journal of Oral and Maxillofacial Surgery 60: 277 – 284.en_US
dc.identifier.citedreferenceHallman, M., Sennerby, L. & Lundgren, S. ( 2002b ) A clinical and histologic evaluation of implant integration in the posterior maxilla after sinus floor augmentation with autogenous bone, bovine hydroxyapatite, or a 20:80 mixture. The International Journal of Oral & Maxillofacial Implants 17: 635 – 643.en_US
dc.identifier.citedreferenceKatayama, Y., House, C.M., Udagawa, N., Kazama, J.J., McFarland, R.J., Martin, T.J. & Findlay, D.M. ( 1998 ) Casein kinase 2 phosphorylation of recombinant rat osteopontin enhances adhesion of osteoclasts but not osteoblasts. Journal of Cellular Physiology 176: 179 – 187.en_US
dc.identifier.citedreferenceLevin, L., Herzberg, R., Dolev, E. & Schwartz‐Arad, D. ( 2004 ) Smoking and complications of onlay bone grafts and sinus lift operations. The International Journal of Oral & Maxillofacial Implants 19: 369 – 373.en_US
dc.identifier.citedreferenceLundgren, S., Andersson, S., Gualini, F. & Sennerby, L. ( 2004 ) Bone reformation with sinus membrane elevation: a new surgical technique for maxillary sinus floor augmentation. Clinical Implant Dentistry & Related Research 6: 165 – 173.en_US
dc.identifier.citedreferenceMartos Diaz, P., Naval Gias, L., Sastre Perez, J., Gonzalez Garcia, R., Bances del Castillo, F., Mancha de la Plata, M., Galindo Moreno, P. & Munoz Guerra, M. ( 2007 ) Sinus elevation by in situ utilization of bone scrapers: technique and results. Medicina Oral, Patología Oral y Cirugía Bucal 12: E537 – E541.en_US
dc.identifier.citedreferenceMatusan‐Ilijas, K., Behrem, S., Jonjic, N., Zarkovic, K. & Lucin, K. ( 2008 ) Osteopontin expression correlates with angiogenesis and survival in malignant astrocytoma. Pathology Oncology Research 14: 293 – 298.en_US
dc.identifier.citedreferenceMayfield, L.J., Skoglund, A., Hising, P., Lang, N.P. & Attstrom, R. ( 2001 ) Evaluation following functional loading of titanium fixtures placed in ridges augmented by deproteinized bone mineral. A human case study. Clinical Oral Implants Research 12: 508 – 514.en_US
dc.identifier.citedreferenceMcKee, M.D. & Nanci, A. ( 1995 ) Osteopontin and the bone remodeling sequence. Colloidal‐gold immunocytochemistry of an interfacial extracellular matrix protein. Annals of the New York Academy of Sciences 760: 177 – 189.en_US
dc.identifier.citedreferenceMilam, S.B., Haskin, C., Zardeneta, G., Chen, D., Magnuson, V.L., Klebe, R.J. & Steffenson, B. ( 1991 ) Cell adhesion proteins in oral biology. Critical Reviews in Oral Biology and Medicine 2: 451 – 491.en_US
dc.identifier.citedreferenceMordenfeld, A., Hallman, M., Johansson, C.B. & Albrektsson, T. ( 2010 ) Histological and histomorphometrical analyses of biopsies harvested 11 years after maxillary sinus floor augmentation with deproteinized bovine and autogenous bone. Clinical Oral Implants Research 21: 961 – 970.en_US
dc.identifier.citedreferenceNkenke, E. & Stelzle, F. ( 2009 ) Clinical outcomes of sinus floor augmentation for implant placement using autogenous bone or bone substitutes: a systematic review. Clinical Oral Implants Research 20 (Suppl. 4): 124 – 133.en_US
dc.identifier.citedreferenceNoda, M., Rittling, S.R., Muguruma, Y., Asou, Y., Yoshitake, H. & Tsuji, K. ( 1998 ) Osteopontin‐deficient mice (OD‐) cells exhibit enhanced actin fiber formation and spreading while OD‐osteoclasts are less efficient in removing hydroxyapatite coated on glass and in recruitment to ectopically implanted bone matrix (abstract). Journal of Biomedical Materials Research 23: S220.en_US
dc.identifier.citedreferenceO'Leary, T.J., Drake, R.B. & Naylor, J.E. ( 1972 ) The plaque control record. Journal of Periodontology 43: 38.en_US
dc.identifier.citedreferencePeleg, M., Garg, A.K., Misch, C.M. & Mazor, Z. ( 2004 ) Maxillary sinus and ridge augmentations using a surface‐derived autogenous bone graft. The International Journal of Oral and Maxillofacial Surgery 62: 1535 – 1544.en_US
dc.identifier.citedreferencePerrotti, V., Nicholls, B.M., Horton, M.A. & Piattelli, A. ( 2009 ) Human osteoclast formation and activity on a xenogenous bone mineral. Journal of Biomedical Materials Research. Part A 90: 238 – 246.en_US
dc.identifier.citedreferenceRazzouk, S., Brunn, J.C., Qin, C., Tye, C.E., Goldberg, H.A. & Butler, W.T. ( 2002 ) Osteopontin posttranslational modifications, possibly phosphorylation, are required for in vitro bone resorption but not osteoclast adhesion. Bone 30: 40 – 47.en_US
dc.identifier.citedreferenceRios, H.F., Avila, G., Galindo, P., Bratu, E. & Wang, H.L. ( 2009 ) The influence of remaining alveolar bone upon lateral window sinus augmentation implant survival. Implant Dentistry 18: 402 – 412.en_US
dc.identifier.citedreferenceRosenlicht, J.L. & Tarnow, D.P. ( 1999 ) Human histologic evidence of integration of functionally loaded hydroxyapatite‐coated implants placed simultaneously with sinus augmentation: a case report 2 1/2 years postplacement. The Journal of Oral Implantology 25: 7 – 10.en_US
dc.identifier.citedreferenceSartori, S., Silvestri, M., Forni, F., Cornaglia, A.I., Tesei, P. & Cattaneo, V. ( 2003 ) Ten‐year follow‐up in a maxillary sinus augmentation using anorganic bovine bone (Bio‐Oss). A case report with histomorphometric evaluation. Clinical Oral Implants Research 14: 369 – 372.en_US
dc.identifier.citedreferenceSchlegel, K.A., Fichtner, G., Schultze‐Mosgau, S. & Wiltfang, J. ( 2003 ) Histologic findings in sinus augmentation with autogenous bone chips versus a bovine bone substitute. The International Journal of Oral & Maxillofacial Implants 18: 53 – 58.en_US
dc.identifier.citedreferenceSchuklenk, U. & Ashcroft, R. ( 2000 ) International research ethics. Bioethics 14: 158 – 172.en_US
dc.identifier.citedreferenceSmiler, D.G., Johnson, P.W., Lozada, J.L., Misch, C., Rosenlicht, J.L., Tatum, O.H. Jr & Wagner, J.R. ( 1992 ) Sinus lift grafts and endosseous implants. Treatment of the atrophic posterior maxilla. Dental Clinics of North America 36: 151 – 186; discussion 187–158.en_US
dc.identifier.citedreferenceSodek, J., Chen, J., Nagata, T., Kasugai, S., Todescan, R. Jr, Li, I.W. & Kim, R.H. ( 1995 ) Regulation of osteopontin expression in osteoblasts. Annals of the New York Academy of Sciences 760: 223 – 241.en_US
dc.identifier.citedreferenceSodek, J., Ganss, B. & McKee, M.D. ( 2000 ) Osteopontin. Critical Reviews in Oral Biology and Medicine 11: 279 – 303.en_US
dc.identifier.citedreferenceSoltan, M. & Smiler, D.G. ( 2005 ) Antral membrane balloon elevation. The Journal of Oral Implantology 31: 85 – 90.en_US
dc.identifier.citedreferenceTadjoedin, E.S., de Lange, G.L., Bronckers, A.L., Lyaruu, D.M. & Burger, E.H. ( 2003 ) Deproteinized cancellous bovine bone (Bio‐Oss) as bone substitute for sinus floor elevation. A retrospective, histomorphometrical study of five cases. Journal of Clinical Periodontology 30: 261 – 270.en_US
dc.identifier.citedreferenceThorwarth, M., Schlegel, K.A., Wehrhan, F., Srour, S. & Schultze‐Mosgau, S. ( 2006 ) Acceleration of de novo bone formation following application of autogenous bone to particulated anorganic bovine material in vivo. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontics 101: 309 – 316.en_US
dc.identifier.citedreferenceTraini, T., Valentini, P., Iezzi, G. & Piattelli, A. ( 2007 ) A histologic and histomorphometric evaluation of anorganic bovine bone retrieved 9 years after a sinus augmentation procedure. Journal of Periodontology 78: 955 – 961.en_US
dc.identifier.citedreferenceValentini, P., Abensur, D., Densari, D., Graziani, J.N. & Hammerle, C. ( 1998 ) Histological evaluation of Bio‐Oss in a 2‐stage sinus floor elevation and implantation procedure. A human case report. Clinical Oral Implants Research 9: 59 – 64.en_US
dc.identifier.citedreferenceVercellotti, T., De Paoli, S. & Nevins, M. ( 2001 ) The piezoelectric bony window osteotomy and sinus membrane elevation: introduction of a new technique for simplification of the sinus augmentation procedure. The International Journal of Periodontics & Restorative Dentistry 21: 561 – 567.en_US
dc.identifier.citedreferenceWallace, S.S. & Froum, S.J. ( 2003 ) Effect of maxillary sinus augmentation on the survival of endosseous dental implants. A systematic review. Annals of Periodontology 8: 328 – 343.en_US
dc.identifier.citedreferenceWallace, S.S., Froum, S.J., Cho, S.C., Elian, N., Monteiro, D., Kim, B.S. & Tarnow, D.P. ( 2005 ) Sinus augmentation utilizing anorganic bovine bone (Bio‐Oss) with absorbable and nonabsorbable membranes placed over the lateral window: histomorphometric and clinical analyses. The International Journal of Periodontics & Restorative Dentistry 25: 551 – 559.en_US
dc.identifier.citedreferenceWallace, S.S., Froum, S.J. & Tarnow, D.P. ( 1996 ) Histologic evaluation of a sinus elevation procedure: a clinical report. The International Journal of Periodontics & Restorative Dentistry 16: 46 – 51.en_US
dc.identifier.citedreferenceWang, H.L. & Katranji, A. ( 2008 ) ABC sinus augmentation classification. The International Journal of Periodontics & Restorative Dentistry 28: 383 – 389.en_US
dc.identifier.citedreferenceWatzek, G., Fürst, G. & Gruber, R. ( 2006 ) Biologic basis of sinus grafting. In: Jensen, O.T., ed. The Sinus Bone Graft. 1st edition, 13 – 26. Hanover Park, IL: Quintessence Books.en_US
dc.identifier.citedreferenceWheeler, S.L. ( 1997 ) Sinus augmentation for dental implants: the use of alloplastic materials. The International Journal of Oral and Maxillofacial Surgery 55: 1287 – 1293.en_US
dc.identifier.citedreferenceYamate, T., Mocharla, H., Taguchi, Y., Igietseme, J.U., Manolagas, S.C. & Abe, E. ( 1997 ) Osteopontin expression by osteoclast and osteoblast progenitors in the murine bone marrow: demonstration of its requirement for osteoclastogenesis and its increase after ovariectomy. Endocrinology 138: 3047 – 3055.en_US
dc.identifier.citedreferenceYildirim, M., Spiekermann, H., Handt, S. & Edelhoff, D. ( 2001 ) Maxillary sinus augmentation with the xenograft Bio‐Oss and autogenous intraoral bone for qualitative improvement of the implant site: a histologic and histomorphometric clinical study in humans. The International Journal of Oral & Maxillofacial Implants 16: 23 – 33.en_US
dc.identifier.citedreferenceZohar, R., Lee, W., Arora, P., Cheifetz, S., McCulloch, C. & Sodek, J. ( 1997 ) Single cell analysis of intracellular osteopontin in osteogenic cultures of fetal rat calvarial cells. Journal of Cellular Physiology 170: 88 – 100.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.