Show simple item record

Forward Targeting of Toxoplasma gondii Proproteins to the Micronemes Involves Conserved Aliphatic Amino Acids

dc.contributor.authorGaji, Rajshekhar Y.en_US
dc.contributor.authorFlammer, Halley P.en_US
dc.contributor.authorCarruthers, Vern B.en_US
dc.date.accessioned2011-11-10T15:31:45Z
dc.date.available2012-09-04T15:27:20Zen_US
dc.date.issued2011-07en_US
dc.identifier.citationGaji, Rajshekhar Y.; Flammer, Halley P.; Carruthers, Vern B. (2011). "Forward Targeting of Toxoplasma gondii Proproteins to the Micronemes Involves Conserved Aliphatic Amino Acids." Traffic 12(7). <http://hdl.handle.net/2027.42/86835>en_US
dc.identifier.issn1398-9219en_US
dc.identifier.issn1600-0854en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/86835
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherApicomplexaen_US
dc.subject.otherMicronemeen_US
dc.subject.otherPropeptideen_US
dc.subject.otherToxoplasma Gondiien_US
dc.subject.otherTraffickingen_US
dc.titleForward Targeting of Toxoplasma gondii Proproteins to the Micronemes Involves Conserved Aliphatic Amino Acidsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan Medical School, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USAen_US
dc.identifier.pmid21438967en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86835/1/j.1600-0854.2011.01192.x.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86835/2/TRA_1192_sm_t1_t7.pdf
dc.identifier.doi10.1111/j.1600-0854.2011.01192.xen_US
dc.identifier.sourceTrafficen_US
dc.identifier.citedreferenceDikeakos JD, Reudelhuber TL. Sending proteins to dense core secretory granules: still a lot to sort out. J Cell Biol 2007; 177: 191 – 196.en_US
dc.identifier.citedreferenceJones JL, Kruszon‐Moran D, Wilson M, McQuillan G, Navin T, McAuley JB. Toxoplasma gondii infection in the United States: seroprevalence and risk factors. Am J Epidemiol 2001; 154: 357 – 365.en_US
dc.identifier.citedreferenceSibley LD. Intracellular parasite invasion strategies. Science 2004; 304: 248 – 253.en_US
dc.identifier.citedreferenceDobrowolski JM, Carruthers VB, Sibley LD. Participation of myosin in gliding motility and host cell invasion by Toxoplasma gondii. Mol Microbiol 1997; 26: 163 – 173.en_US
dc.identifier.citedreferenceCarruthers VB, Giddings OK, Sibley LD. Secretion of micronemal proteins is associated with Toxoplasma invasion of host cells. Cell Microbiol 1999; 1: 225 – 235.en_US
dc.identifier.citedreferenceSoldati D, Dubremetz JF, Lebrun M. Microneme proteins: structural and functional requirements to promote adhesion and invasion by the apicomplexan parasite Toxoplasma gondii. Int J Parasitol 2001; 31: 1293 – 1302.en_US
dc.identifier.citedreferenceCerede O, Dubremetz JF, Bout D, Lebrun M. The Toxoplasma gondii protein MIC3 requires pro‐peptide cleavage and dimerization to function as adhesin. EMBO J 2002; 21: 2526 – 2536.en_US
dc.identifier.citedreferenceCarruthers VB, Moreno SN, Sibley LD. Ethanol and acetaldehyde elevate intracellular [Ca 2+ ] and stimulate microneme discharge in Toxoplasma gondii. Biochem J 1999; 342: 379 – 386.en_US
dc.identifier.citedreferenceHuynh MH, Carruthers VB. Toxoplasma MIC2 is a major determinant of invasion and virulence. PLoS Pathog 2006; 2: e84.en_US
dc.identifier.citedreferenceCarruthers VB. Host cell invasion by the opportunistic pathogen Toxoplasma gondii. Acta Trop 2002; 81: 111 – 122.en_US
dc.identifier.citedreferenceMeissner M, Reiss M, Viebig N, Carruthers VB, Toursel C, Tomavo S, Ajioka J, Soldati D. A family of transmembrane microneme proteins of Toxoplasma gondii contain EGF‐like domains and function as escorters. J Cell Sci 2002; 115: 563 – 574.en_US
dc.identifier.citedreferenceKessler H, Herm‐Gotz A, Hegge S, Rauch M, Soldati‐Favre D, Frischknecht F, Meissner M. Microneme protein 8—a new essential invasion factor in Toxoplasma gondii. J Cell Sci 2008; 121: 947 – 956.en_US
dc.identifier.citedreferenceJewett TJ, Sibley LD. The Toxoplasma proteins MIC2 and M2AP form a hexameric complex necessary for intracellular survival. J Biol Chem 2003; 11: 885 – 894.en_US
dc.identifier.citedreferenceParussini F, Coppens I, Shah PP, Diamond SL, Carruthers VB. Cathepsin L occupies a vacuolar compartment and is a protein maturase within the endo/exocytic system of Toxoplasma gondii. Mol Microbiol 2010; 76: 1340 – 1357.en_US
dc.identifier.citedreferenceHuynh MH, Rabenau KE, Harper JM, Beatty WL, Sibley LD, Carruthers VB. Rapid invasion of host cells by Toxoplasma requires secretion of the MIC2‐M2AP adhesive protein complex. EMBO J 2003; 22: 2082 – 2090.en_US
dc.identifier.citedreferenceRabenau KE, Sohrabi A, Tripathy A, Reitter C, Ajioka JW, Tomley FM, Carruthers VB. TgM2AP participates in Toxoplasma gondii invasion of host cells and is tightly associated with the adhesive protein TgMIC2. Mol Microbiol 2001; 41: 537 – 547.en_US
dc.identifier.citedreferenceDi Cristina M, Spaccapelo R, Soldati D, Bistoni F, Crisanti A. Two conserved amino acid motifs mediate protein targeting to the micronemes of the apicomplexan parasite Toxoplasma gondii. Mol Cell Biol 2000; 20: 7332 – 7341.en_US
dc.identifier.citedreferenceReiss M, Viebig N, Brecht S, Fourmaux MN, Soete M, Di Cristina M, Dubremetz JF, Soldati D. Identification and characterization of an escorter for two secretory adhesins in Toxoplasma gondii. J Cell Biol 2001; 152: 563 – 578.en_US
dc.identifier.citedreferenceHarper JM, Huynh MH, Coppens I, Parussini F, Moreno S, Carruthers VB. A cleavable propeptide influences Toxoplasma infection by facilitating the trafficking and secretion of the TgMIC2‐M2AP invasion complex. Mol Biol Cell 2006; 17: 4551 – 4563.en_US
dc.identifier.citedreferenceBrydges SD, Harper JM, Parussini F, Coppens I, Carruthers VB. A transient forward‐targeting element for microneme‐regulated secretion in Toxoplasma gondii. Biol Cell 2008; 100: 253 – 264.en_US
dc.identifier.citedreferenceEl Hajj H, Papoin J, Cerede O, Garcia‐Reguet N, Soete M, Dubremetz JF, Lebrun M. Molecular signals in the trafficking of Toxoplasma gondii protein MIC3 to the micronemes. Eukaryot Cell 2008; 7: 1019 – 1028.en_US
dc.identifier.citedreferenceSheiner L, Santos JM, Klages N, Parussini F, Jemmely N, Friedrich N, Ward GE, Soldati‐Favre D. Toxoplasma gondii transmembrane microneme proteins and their modular design. Mol Microbiol 2010; 77: 912 – 929.en_US
dc.identifier.citedreferenceMiranda K, Pace DA, Cintron R, Rodrigues JC, Fang J, Smith A, Rohloff P, Coelho E, de Haas F, de Souza W, Coppens I, Sibley LD, Moreno SN. Characterization of a novel organelle in Toxoplasma gondii with similar composition and function to the plant vacuole. Mol Microbiol 2010; 76: 1358 – 1375.en_US
dc.identifier.citedreferenceBrydges SD, Zhou XW, Huynh MH, Harper JM, Mital J, Adjogble KD, Daubener W, Ward GE, Carruthers VB. Targeted deletion of MIC5 enhances trimming proteolysis of Toxoplasma invasion proteins. Eukaryot Cell 2006; 5: 2174 – 2183.en_US
dc.identifier.citedreferenceBinder EM, Lagal V, Kim K. The prodomain of Toxoplasma gondii GPI‐anchored subtilase TgSUB1 mediates its targeting to micronemes. Traffic 2008; 9: 1485 – 1496.en_US
dc.identifier.citedreferenceHoppe HC, Ngo HM, Yang M, Joiner KA. Targeting to rhoptry organelles of Toxoplasma gondii involves evolutionarily conserved mechanisms. Nat Cell Biol 2000; 2: 449 – 456.en_US
dc.identifier.citedreferenceNgo HM, Yang M, Paprotka K, Pypaert M, Hoppe H, Joiner KA. AP‐1 in Toxoplasma gondii mediates biogenesis of the rhoptry secretory organelle from a post‐Golgi compartment. J Biol Chem 2003; 278: 5343 – 5352.en_US
dc.identifier.citedreferenceArvan P, Halban PA. Sorting ourselves out: seeking consensus on trafficking in the beta‐cell. Traffic 2004; 5: 53 – 61.en_US
dc.identifier.citedreferenceCool DR, Normant E, Shen F, Chen HC, Pannell L, Zhang Y, Loh YP. Carboxypeptidase E is a regulated secretory pathway sorting receptor: genetic obliteration leads to endocrine disorders in Cpe(fat) mice. Cell 1997; 88: 73 – 83.en_US
dc.identifier.citedreferenceNatori S, Huttner WB. Chromogranin B (secretogranin I) promotes sorting to the regulated secretory pathway of processing intermediates derived from a peptide hormone precursor. Proc Natl Acad Sci U S A 1996; 93: 4431 – 4436.en_US
dc.identifier.citedreferenceKim T, Tao‐Cheng JH, Eiden LE, Loh YP. Chromogranin A, an “on/off” switch controlling dense‐core secretory granule biogenesis. Cell 2001; 106: 499 – 509.en_US
dc.identifier.citedreferenceDikeakos JD, Di Lello P, Lacombe MJ, Ghirlando R, Legault P, Reudelhuber TL, Omichinski JG. Functional and structural characterization of a dense core secretory granule sorting domain from the PC1/3 protease. Proc Natl Acad Sci U S A 2009; 106: 7408 – 7413.en_US
dc.identifier.citedreferenceLobel P, Fujimoto K, Ye RD, Griffiths G, Kornfeld S. Mutations in the cytoplasmic domain of the 275 kd mannose 6‐phosphate receptor differentially alter lysosomal enzyme sorting and endocytosis. Cell 1989; 57: 787 – 796.en_US
dc.identifier.citedreferenceCanuel M, Korkidakis A, Konnyu K, Morales CR. Sortilin mediates the lysosomal targeting of cathepsins D and H. Biochem Biophys Res Commun 2008; 373: 292 – 297.en_US
dc.identifier.citedreferenceCanuel M, Libin Y, Morales CR. The interactomics of sortilin: an ancient lysosomal receptor evolving new functions. Histol Histopathol 2009; 24: 481 – 492.en_US
dc.identifier.citedreferenceQuistgaard EM, Madsen P, Groftehauge MK, Nissen P, Petersen CM, Thirup SS. Ligands bind to sortilin in the tunnel of a ten‐bladed beta‐propeller domain. Nat Struct Mol Biol 2009; 16: 96 – 98.en_US
dc.identifier.citedreferenceKirsch T, Paris N, Butler JM, Beevers L, Rogers JC. Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc Natl Acad Sci U S A 1994; 91: 3403 – 3407.en_US
dc.identifier.citedreferenceKirsch T, Saalbach G, Raikhel NV, Beevers L. Interaction of a potential vacuolar targeting receptor with amino‐ and carboxyl‐terminal targeting determinants. Plant Physiol 1996; 111: 469 – 474.en_US
dc.identifier.citedreferenceAhmed SU, Rojo E, Kovaleva V, Venkataraman S, Dombrowski JE, Matsuoka K, Raikhel NV. The plant vacuolar sorting receptor AtELP is involved in transport of NH(2)‐terminal propeptide‐containing vacuolar proteins in Arabidopsis thaliana. J Cell Biol 2000; 149: 1335 – 1344.en_US
dc.identifier.citedreferenceMatsuoka K, Nakamura K. Large alkyl side‐chains of isoleucine and leucine in the NPIRL region constitute the core of the vacuolar sorting determinant of sporamin precursor. Plant Mol Biol 1999; 41: 825 – 835.en_US
dc.identifier.citedreferenceGajria B, Bahl A, Brestelli J, Dommer J, Fischer S, Gao X, Heiges M, Iodice J, Kissinger JC, Mackey AJ, Pinney DF, Roos DS, Stoeckert CJ Jr, Wang H, Brunk BP. ToxoDB: an integrated Toxoplasma gondii database resource. Nucleic Acids Res 2008; 36: D553 – D556.en_US
dc.identifier.citedreferenceBradley PJ, Boothroyd JC. The pro region of Toxoplasma ROP1 is a rhoptry‐targeting signal. Int J Parasitol 2001; 31: 1177 – 1186.en_US
dc.identifier.citedreferenceRichard D, Kats LM, Langer C, Black CG, Mitri K, Boddey JA, Cowman AF, Coppel RL. Identification of rhoptry trafficking determinants and evidence for a novel sorting mechanism in the malaria parasite Plasmodium falciparum. PLoS Pathog 2009; 5: e1000328.en_US
dc.identifier.citedreferenceChang HH, Falick AM, Carlton PM, Sedat JW, DeRisi JL, Marletta MA. N‐terminal processing of proteins exported by malaria parasites. Mol Biochem Parasitol 2008; 160: 107 – 115.en_US
dc.identifier.citedreferenceOsborne AR, Speicher KD, Tamez PA, Bhattacharjee S, Speicher DW, Haldar K. The host targeting motif in exported Plasmodium proteins is cleaved in the parasite endoplasmic reticulum. Mol Biochem Parasitol 2010; 171: 25 – 31.en_US
dc.identifier.citedreferenceRusso I, Babbitt S, Muralidharan V, Butler T, Oksman A, Goldberg DE. Plasmepsin V licenses Plasmodium proteins for export into the host erythrocyte. Nature 2010; 463: 632 – 636.en_US
dc.identifier.citedreferenceCarruthers VB, Sibley LD. Mobilization of intracellular calcium stimulates microneme discharge in Toxoplasma gondii. Mol Microbiol 1999; 31: 421 – 428.en_US
dc.identifier.citedreferenceSoldati D, Boothroyd JC. Transient transfection and expression in the obligate intracellular parasite, Toxoplasma gondii. Science 1993; 260: 349 – 351.en_US
dc.identifier.citedreferenceDonald RGK, Roos DS. Stable molecular transformation of Toxoplasma gondii: a selectable DHFR‐TS marker based on drug resistance mutations in malaria. Proc Natl Acad Sci U S A 1993; 90: 11703 – 11707.en_US
dc.identifier.citedreferenceBrydges SD, Sherman GD, Nockemann S, Loyens A, Daubener W, Dubremetz JF, Carruthers VB. Molecular characterization of TgMIC5, a proteolytically processed antigen secreted from the micronemes of Toxoplasma gondii. Mol Biochem Parasitol 2000; 111: 51 – 66.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.