Forward Targeting of Toxoplasma gondii Proproteins to the Micronemes Involves Conserved Aliphatic Amino Acids
dc.contributor.author | Gaji, Rajshekhar Y. | en_US |
dc.contributor.author | Flammer, Halley P. | en_US |
dc.contributor.author | Carruthers, Vern B. | en_US |
dc.date.accessioned | 2011-11-10T15:31:45Z | |
dc.date.available | 2012-09-04T15:27:20Z | en_US |
dc.date.issued | 2011-07 | en_US |
dc.identifier.citation | Gaji, Rajshekhar Y.; Flammer, Halley P.; Carruthers, Vern B. (2011). "Forward Targeting of Toxoplasma gondii Proproteins to the Micronemes Involves Conserved Aliphatic Amino Acids." Traffic 12(7). <http://hdl.handle.net/2027.42/86835> | en_US |
dc.identifier.issn | 1398-9219 | en_US |
dc.identifier.issn | 1600-0854 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/86835 | |
dc.publisher | Blackwell Publishing Ltd | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.subject.other | Apicomplexa | en_US |
dc.subject.other | Microneme | en_US |
dc.subject.other | Propeptide | en_US |
dc.subject.other | Toxoplasma Gondii | en_US |
dc.subject.other | Trafficking | en_US |
dc.title | Forward Targeting of Toxoplasma gondii Proproteins to the Micronemes Involves Conserved Aliphatic Amino Acids | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Molecular, Cellular and Developmental Biology | en_US |
dc.subject.hlbtoplevel | Health Sciences | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Microbiology and Immunology, University of Michigan Medical School, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA | en_US |
dc.identifier.pmid | 21438967 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/86835/1/j.1600-0854.2011.01192.x.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/86835/2/TRA_1192_sm_t1_t7.pdf | |
dc.identifier.doi | 10.1111/j.1600-0854.2011.01192.x | en_US |
dc.identifier.source | Traffic | en_US |
dc.identifier.citedreference | Dikeakos JD, Reudelhuber TL. Sending proteins to dense core secretory granules: still a lot to sort out. J Cell Biol 2007; 177: 191 – 196. | en_US |
dc.identifier.citedreference | Jones JL, Kruszon‐Moran D, Wilson M, McQuillan G, Navin T, McAuley JB. Toxoplasma gondii infection in the United States: seroprevalence and risk factors. Am J Epidemiol 2001; 154: 357 – 365. | en_US |
dc.identifier.citedreference | Sibley LD. Intracellular parasite invasion strategies. Science 2004; 304: 248 – 253. | en_US |
dc.identifier.citedreference | Dobrowolski JM, Carruthers VB, Sibley LD. Participation of myosin in gliding motility and host cell invasion by Toxoplasma gondii. Mol Microbiol 1997; 26: 163 – 173. | en_US |
dc.identifier.citedreference | Carruthers VB, Giddings OK, Sibley LD. Secretion of micronemal proteins is associated with Toxoplasma invasion of host cells. Cell Microbiol 1999; 1: 225 – 235. | en_US |
dc.identifier.citedreference | Soldati D, Dubremetz JF, Lebrun M. Microneme proteins: structural and functional requirements to promote adhesion and invasion by the apicomplexan parasite Toxoplasma gondii. Int J Parasitol 2001; 31: 1293 – 1302. | en_US |
dc.identifier.citedreference | Cerede O, Dubremetz JF, Bout D, Lebrun M. The Toxoplasma gondii protein MIC3 requires pro‐peptide cleavage and dimerization to function as adhesin. EMBO J 2002; 21: 2526 – 2536. | en_US |
dc.identifier.citedreference | Carruthers VB, Moreno SN, Sibley LD. Ethanol and acetaldehyde elevate intracellular [Ca 2+ ] and stimulate microneme discharge in Toxoplasma gondii. Biochem J 1999; 342: 379 – 386. | en_US |
dc.identifier.citedreference | Huynh MH, Carruthers VB. Toxoplasma MIC2 is a major determinant of invasion and virulence. PLoS Pathog 2006; 2: e84. | en_US |
dc.identifier.citedreference | Carruthers VB. Host cell invasion by the opportunistic pathogen Toxoplasma gondii. Acta Trop 2002; 81: 111 – 122. | en_US |
dc.identifier.citedreference | Meissner M, Reiss M, Viebig N, Carruthers VB, Toursel C, Tomavo S, Ajioka J, Soldati D. A family of transmembrane microneme proteins of Toxoplasma gondii contain EGF‐like domains and function as escorters. J Cell Sci 2002; 115: 563 – 574. | en_US |
dc.identifier.citedreference | Kessler H, Herm‐Gotz A, Hegge S, Rauch M, Soldati‐Favre D, Frischknecht F, Meissner M. Microneme protein 8—a new essential invasion factor in Toxoplasma gondii. J Cell Sci 2008; 121: 947 – 956. | en_US |
dc.identifier.citedreference | Jewett TJ, Sibley LD. The Toxoplasma proteins MIC2 and M2AP form a hexameric complex necessary for intracellular survival. J Biol Chem 2003; 11: 885 – 894. | en_US |
dc.identifier.citedreference | Parussini F, Coppens I, Shah PP, Diamond SL, Carruthers VB. Cathepsin L occupies a vacuolar compartment and is a protein maturase within the endo/exocytic system of Toxoplasma gondii. Mol Microbiol 2010; 76: 1340 – 1357. | en_US |
dc.identifier.citedreference | Huynh MH, Rabenau KE, Harper JM, Beatty WL, Sibley LD, Carruthers VB. Rapid invasion of host cells by Toxoplasma requires secretion of the MIC2‐M2AP adhesive protein complex. EMBO J 2003; 22: 2082 – 2090. | en_US |
dc.identifier.citedreference | Rabenau KE, Sohrabi A, Tripathy A, Reitter C, Ajioka JW, Tomley FM, Carruthers VB. TgM2AP participates in Toxoplasma gondii invasion of host cells and is tightly associated with the adhesive protein TgMIC2. Mol Microbiol 2001; 41: 537 – 547. | en_US |
dc.identifier.citedreference | Di Cristina M, Spaccapelo R, Soldati D, Bistoni F, Crisanti A. Two conserved amino acid motifs mediate protein targeting to the micronemes of the apicomplexan parasite Toxoplasma gondii. Mol Cell Biol 2000; 20: 7332 – 7341. | en_US |
dc.identifier.citedreference | Reiss M, Viebig N, Brecht S, Fourmaux MN, Soete M, Di Cristina M, Dubremetz JF, Soldati D. Identification and characterization of an escorter for two secretory adhesins in Toxoplasma gondii. J Cell Biol 2001; 152: 563 – 578. | en_US |
dc.identifier.citedreference | Harper JM, Huynh MH, Coppens I, Parussini F, Moreno S, Carruthers VB. A cleavable propeptide influences Toxoplasma infection by facilitating the trafficking and secretion of the TgMIC2‐M2AP invasion complex. Mol Biol Cell 2006; 17: 4551 – 4563. | en_US |
dc.identifier.citedreference | Brydges SD, Harper JM, Parussini F, Coppens I, Carruthers VB. A transient forward‐targeting element for microneme‐regulated secretion in Toxoplasma gondii. Biol Cell 2008; 100: 253 – 264. | en_US |
dc.identifier.citedreference | El Hajj H, Papoin J, Cerede O, Garcia‐Reguet N, Soete M, Dubremetz JF, Lebrun M. Molecular signals in the trafficking of Toxoplasma gondii protein MIC3 to the micronemes. Eukaryot Cell 2008; 7: 1019 – 1028. | en_US |
dc.identifier.citedreference | Sheiner L, Santos JM, Klages N, Parussini F, Jemmely N, Friedrich N, Ward GE, Soldati‐Favre D. Toxoplasma gondii transmembrane microneme proteins and their modular design. Mol Microbiol 2010; 77: 912 – 929. | en_US |
dc.identifier.citedreference | Miranda K, Pace DA, Cintron R, Rodrigues JC, Fang J, Smith A, Rohloff P, Coelho E, de Haas F, de Souza W, Coppens I, Sibley LD, Moreno SN. Characterization of a novel organelle in Toxoplasma gondii with similar composition and function to the plant vacuole. Mol Microbiol 2010; 76: 1358 – 1375. | en_US |
dc.identifier.citedreference | Brydges SD, Zhou XW, Huynh MH, Harper JM, Mital J, Adjogble KD, Daubener W, Ward GE, Carruthers VB. Targeted deletion of MIC5 enhances trimming proteolysis of Toxoplasma invasion proteins. Eukaryot Cell 2006; 5: 2174 – 2183. | en_US |
dc.identifier.citedreference | Binder EM, Lagal V, Kim K. The prodomain of Toxoplasma gondii GPI‐anchored subtilase TgSUB1 mediates its targeting to micronemes. Traffic 2008; 9: 1485 – 1496. | en_US |
dc.identifier.citedreference | Hoppe HC, Ngo HM, Yang M, Joiner KA. Targeting to rhoptry organelles of Toxoplasma gondii involves evolutionarily conserved mechanisms. Nat Cell Biol 2000; 2: 449 – 456. | en_US |
dc.identifier.citedreference | Ngo HM, Yang M, Paprotka K, Pypaert M, Hoppe H, Joiner KA. AP‐1 in Toxoplasma gondii mediates biogenesis of the rhoptry secretory organelle from a post‐Golgi compartment. J Biol Chem 2003; 278: 5343 – 5352. | en_US |
dc.identifier.citedreference | Arvan P, Halban PA. Sorting ourselves out: seeking consensus on trafficking in the beta‐cell. Traffic 2004; 5: 53 – 61. | en_US |
dc.identifier.citedreference | Cool DR, Normant E, Shen F, Chen HC, Pannell L, Zhang Y, Loh YP. Carboxypeptidase E is a regulated secretory pathway sorting receptor: genetic obliteration leads to endocrine disorders in Cpe(fat) mice. Cell 1997; 88: 73 – 83. | en_US |
dc.identifier.citedreference | Natori S, Huttner WB. Chromogranin B (secretogranin I) promotes sorting to the regulated secretory pathway of processing intermediates derived from a peptide hormone precursor. Proc Natl Acad Sci U S A 1996; 93: 4431 – 4436. | en_US |
dc.identifier.citedreference | Kim T, Tao‐Cheng JH, Eiden LE, Loh YP. Chromogranin A, an “on/off” switch controlling dense‐core secretory granule biogenesis. Cell 2001; 106: 499 – 509. | en_US |
dc.identifier.citedreference | Dikeakos JD, Di Lello P, Lacombe MJ, Ghirlando R, Legault P, Reudelhuber TL, Omichinski JG. Functional and structural characterization of a dense core secretory granule sorting domain from the PC1/3 protease. Proc Natl Acad Sci U S A 2009; 106: 7408 – 7413. | en_US |
dc.identifier.citedreference | Lobel P, Fujimoto K, Ye RD, Griffiths G, Kornfeld S. Mutations in the cytoplasmic domain of the 275 kd mannose 6‐phosphate receptor differentially alter lysosomal enzyme sorting and endocytosis. Cell 1989; 57: 787 – 796. | en_US |
dc.identifier.citedreference | Canuel M, Korkidakis A, Konnyu K, Morales CR. Sortilin mediates the lysosomal targeting of cathepsins D and H. Biochem Biophys Res Commun 2008; 373: 292 – 297. | en_US |
dc.identifier.citedreference | Canuel M, Libin Y, Morales CR. The interactomics of sortilin: an ancient lysosomal receptor evolving new functions. Histol Histopathol 2009; 24: 481 – 492. | en_US |
dc.identifier.citedreference | Quistgaard EM, Madsen P, Groftehauge MK, Nissen P, Petersen CM, Thirup SS. Ligands bind to sortilin in the tunnel of a ten‐bladed beta‐propeller domain. Nat Struct Mol Biol 2009; 16: 96 – 98. | en_US |
dc.identifier.citedreference | Kirsch T, Paris N, Butler JM, Beevers L, Rogers JC. Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc Natl Acad Sci U S A 1994; 91: 3403 – 3407. | en_US |
dc.identifier.citedreference | Kirsch T, Saalbach G, Raikhel NV, Beevers L. Interaction of a potential vacuolar targeting receptor with amino‐ and carboxyl‐terminal targeting determinants. Plant Physiol 1996; 111: 469 – 474. | en_US |
dc.identifier.citedreference | Ahmed SU, Rojo E, Kovaleva V, Venkataraman S, Dombrowski JE, Matsuoka K, Raikhel NV. The plant vacuolar sorting receptor AtELP is involved in transport of NH(2)‐terminal propeptide‐containing vacuolar proteins in Arabidopsis thaliana. J Cell Biol 2000; 149: 1335 – 1344. | en_US |
dc.identifier.citedreference | Matsuoka K, Nakamura K. Large alkyl side‐chains of isoleucine and leucine in the NPIRL region constitute the core of the vacuolar sorting determinant of sporamin precursor. Plant Mol Biol 1999; 41: 825 – 835. | en_US |
dc.identifier.citedreference | Gajria B, Bahl A, Brestelli J, Dommer J, Fischer S, Gao X, Heiges M, Iodice J, Kissinger JC, Mackey AJ, Pinney DF, Roos DS, Stoeckert CJ Jr, Wang H, Brunk BP. ToxoDB: an integrated Toxoplasma gondii database resource. Nucleic Acids Res 2008; 36: D553 – D556. | en_US |
dc.identifier.citedreference | Bradley PJ, Boothroyd JC. The pro region of Toxoplasma ROP1 is a rhoptry‐targeting signal. Int J Parasitol 2001; 31: 1177 – 1186. | en_US |
dc.identifier.citedreference | Richard D, Kats LM, Langer C, Black CG, Mitri K, Boddey JA, Cowman AF, Coppel RL. Identification of rhoptry trafficking determinants and evidence for a novel sorting mechanism in the malaria parasite Plasmodium falciparum. PLoS Pathog 2009; 5: e1000328. | en_US |
dc.identifier.citedreference | Chang HH, Falick AM, Carlton PM, Sedat JW, DeRisi JL, Marletta MA. N‐terminal processing of proteins exported by malaria parasites. Mol Biochem Parasitol 2008; 160: 107 – 115. | en_US |
dc.identifier.citedreference | Osborne AR, Speicher KD, Tamez PA, Bhattacharjee S, Speicher DW, Haldar K. The host targeting motif in exported Plasmodium proteins is cleaved in the parasite endoplasmic reticulum. Mol Biochem Parasitol 2010; 171: 25 – 31. | en_US |
dc.identifier.citedreference | Russo I, Babbitt S, Muralidharan V, Butler T, Oksman A, Goldberg DE. Plasmepsin V licenses Plasmodium proteins for export into the host erythrocyte. Nature 2010; 463: 632 – 636. | en_US |
dc.identifier.citedreference | Carruthers VB, Sibley LD. Mobilization of intracellular calcium stimulates microneme discharge in Toxoplasma gondii. Mol Microbiol 1999; 31: 421 – 428. | en_US |
dc.identifier.citedreference | Soldati D, Boothroyd JC. Transient transfection and expression in the obligate intracellular parasite, Toxoplasma gondii. Science 1993; 260: 349 – 351. | en_US |
dc.identifier.citedreference | Donald RGK, Roos DS. Stable molecular transformation of Toxoplasma gondii: a selectable DHFR‐TS marker based on drug resistance mutations in malaria. Proc Natl Acad Sci U S A 1993; 90: 11703 – 11707. | en_US |
dc.identifier.citedreference | Brydges SD, Sherman GD, Nockemann S, Loyens A, Daubener W, Dubremetz JF, Carruthers VB. Molecular characterization of TgMIC5, a proteolytically processed antigen secreted from the micronemes of Toxoplasma gondii. Mol Biochem Parasitol 2000; 111: 51 – 66. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.