Show simple item record

Revisiting projected shifts in the climate envelopes of North American trees using updated general circulation models

dc.contributor.authorMcKENNEY, DANIEL W.en_US
dc.contributor.authorPedlar, John H.en_US
dc.contributor.authorRood, Richard B.en_US
dc.contributor.authorPrice, Daviden_US
dc.date.accessioned2011-11-10T15:32:00Z
dc.date.available2012-10-01T18:34:19Zen_US
dc.date.issued2011-08en_US
dc.identifier.citationMcKENNEY, DANIEL W.; Pedlar, John H. ; Rood, Richard B. ; Price, David (2011). "Revisiting projected shifts in the climate envelopes of North American trees using updated general circulation models." Global Change Biology 17(8). <http://hdl.handle.net/2027.42/86847>en_US
dc.identifier.issn1354-1013en_US
dc.identifier.issn1365-2486en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/86847
dc.description.abstractGlobal climate models are constantly being upgraded, but it is often not clear what these changes have on climate change impact projections. We used difference maps to directly compare downscaled projections of temperature and precipitation across North America for two versions (or generations) of three different Atmospheric‐Ocean General Circulation Models (AOGCM)s. We found that AOGCM versions differed in their projections for the end of the current century by up to 4 °C for annual mean temperature and 60% for annual precipitation. To place these changes in an ecological context, we reanalyzed our work on shifts in tree climate envelopes (CEs) using the newer‐generation AOGCM projections. Based on the updated AOGCMs, by the 2071–2100 period, tree CEs shifted up to 2.4 degrees further north or 2.6 degrees further south (depending on the AOGCM) and were about 10% larger in size. Despite considerable differences between versions of a given AOGCM, projections made by the newer version of each AOGCM were in general agreement, suggesting convergence across the three models studied here. Assessing the AOGCM outputs in this way provides insight into the magnitude and importance of change associated with AOGCM upgrades as they continue to evolve through time.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherClimate Changeen_US
dc.subject.otherClimate Envelopesen_US
dc.subject.otherGeneral Circulation Modelsen_US
dc.subject.otherNorth American Treesen_US
dc.subject.otherUncertaintyen_US
dc.titleRevisiting projected shifts in the climate envelopes of North American trees using updated general circulation modelsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Atmospheric, Oceanic and Space Sciences, University of Michigan, 2455 Hayward Street, Ann Arbor, Michigan 48109, USAen_US
dc.contributor.affiliationotherLandscape Analysis and Applications Section, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen Street E. Sault Ste Marie, ON, Canada P6A 2E5en_US
dc.contributor.affiliationotherNatural Resources Canada, Canadian Forest Service, Northern Forestry Centre, 5320 – 122nd Street, Edmonton, Alberta, Canadaen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86847/1/j.1365-2486.2011.02413.x.pdf
dc.identifier.doi10.1111/j.1365-2486.2011.02413.xen_US
dc.identifier.sourceGlobal Change Biologyen_US
dc.identifier.citedreferenceAitken SN, Yeaman S, Holliday JA, Wang TL, Curtis‐McLane S ( 2008 ) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications, 1, 95 – 111.en_US
dc.identifier.citedreferenceAraujo MB, New M ( 2007 ) Ensemble forecasting of species distributions. Trends in Ecology and Evolution, 22, 42 – 47.en_US
dc.identifier.citedreferenceAraujo MB, Rahbek C ( 2006 ) How does climate change affect biodiversity? Science, 313, 1396 – 1397.en_US
dc.identifier.citedreferenceBeaumont LJ, Hughes L, Poulsen M ( 2005 ) Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species' current and future distributions. Ecological Modelling, 186, 250 – 269.en_US
dc.identifier.citedreferenceBertin RI ( 2008 ) Plant Phenology and Distribution in Relation to Recent Climate Change. Journal of the Torrey Botanical Society, 135, 126 – 146.en_US
dc.identifier.citedreferenceBonan GB, Oleson KW, Vertenstein M, Levis S ( 2002 ) The land surface climatology of the Community Land Model coupled to the NCAR Community Climate Model. Journal of Climate, 15, 3123 – 3149.en_US
dc.identifier.citedreferenceBuisson L, Thuiller W, Casajus N, Lek S, Grenouillet G ( 2010 ) Uncertainty in ensemble forecasting of species distribution. Global Change Biology, 16, 1145 – 1157.en_US
dc.identifier.citedreferenceCollins WD, Bitz CM, Blackmon ML et al. ( 2006 ) The Community Climate System Model Version 3 (CCSM3). Journal of Climate, 19, 2122 – 2143.en_US
dc.identifier.citedreferenceCox P, Stephenson D ( 2007 ) A changing climate for prediction. Science, 317, 207 – 208.en_US
dc.identifier.citedreferenceDavis AJ, Jenkinson LS, Lawton JH, Shorrocks B, Wood S ( 1998 ) Making mistakes when predicting shifts in species range in response to global warming. Nature, 391, 783 – 786.en_US
dc.identifier.citedreferenceGordon HB, Rotstayn LD, McGregor JL et al. ( 2002 ) The CSIRO Mk3 climate system model. Technical Paper No. 60, CSIRO Atmospheric Research, Aspendale, Victoria, Australia.en_US
dc.identifier.citedreferenceHamann A, Wang T ( 2006 ) Potential effects of climate change on ecosystem and tree species distribution in British Columbia. Ecology, 87, 2773 – 2786.en_US
dc.identifier.citedreferenceHampe A ( 2004 ) Bioclimate envelope models: What they detect and what they hide. Global Ecology and Biogeography, 13, 469 – 471.en_US
dc.identifier.citedreferenceHawkins EE, Sutton RR ( 2009 ) The potential to narrow uncertainty in regional climate predictions. Bulletin of the American Meteorological Society, 90, 1095 – 1107.en_US
dc.identifier.citedreferenceHeffernan O ( 2010 ) The climate machine. Nature, 463, 1014 – 1016.en_US
dc.identifier.citedreferenceHolland MM, Bitz CM ( 2003 ) Polar amplification of climate change in coupled models. Climate Dynamics, 21, 221 – 232.en_US
dc.identifier.citedreferenceHoulder DJ, Hutchinson MF, Nix HA, McMahon JP ( 2000 ) ANUCLIM User Guide, Version 5.1. Canberra, Australia: Centre for Resource and Environmental Studies, Australian National University.en_US
dc.identifier.citedreferenceHunter ML Jr ( 2007 ) Climate change and moving species: furthering the debate on assisted colonization. Conservation Biology, 21, 1356 – 1358.en_US
dc.identifier.citedreferenceHutchinson MF ( 2004 ) ANUSPLIN Version 4.3. Centre for Resource and Environmental Studies, Australian National University. Available at: http://cres.anu.edu.au/outputs/anusplin.php (accessed 8 October 2007).en_US
dc.identifier.citedreferenceIverson L, Prasad A, Schwartz M ( 2005 ) Predicting potential changes in suitable habitat and distribution by 2100 for tree species of the eastern United States. Journal Agricultural Meteorology, 61, 29 – 37.en_US
dc.identifier.citedreferenceIverson LR, Prasad AM ( 1998 ) Predicting abundance of 80 tree species following climate change in the eastern United States. Ecological Monographs, 68, 465 – 485.en_US
dc.identifier.citedreferenceIPCC ( 2001 ) Climate change 2001: The scientific basis. In: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (eds Houghton JT et al.), Cambridge University Press, Cambridge, UK, New York, NY, USA.en_US
dc.identifier.citedreferenceIPCC ( 2007 ) Climate change 2007: the physical science basis. In: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL ), Cambridge University Press, Cambridge, UK, New York, NY, USA.en_US
dc.identifier.citedreferenceKelly AE, Goulden ML ( 2008 ) Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences of the United States of America, 105, 11823 – 11826.en_US
dc.identifier.citedreferenceKiehl JT, Gent PR ( 2004 ) The community climate system model, version 2. Journal of Climate, 17, 3666 – 3682.en_US
dc.identifier.citedreferenceKnutti R, Allen MR, Friedlingstein P et al. ( 2008 ) A review of uncertainties in global temperature projections over the twenty‐first century. Journal of Climate, 21, 2651 – 2663.en_US
dc.identifier.citedreferenceKuparinen A, Savolainen O, Schurr FM ( 2009 ) Increased mortality can promote evolutionary adaptation of forest trees to climate change. Forest Ecology Management, 259, 1003 – 1008.en_US
dc.identifier.citedreferenceLawton JL ( 2000 ) Concluding remarks: a review of some open questions. In: Ecological Consequences of Heterogeneity (eds Hutchings MJ, John E, Stewart AJA ), pp. 401 – 424. Cambridge University Press, Cambridge, UK.en_US
dc.identifier.citedreferenceLee MI, Schubert SD, Suarez MJ et al. ( 2007 ) An analysis of the warm season diurnal cycle over the continental United States and northern Mexico in general circulation models. Journal of Hydrometeorology, 8, 344 – 366.en_US
dc.identifier.citedreferenceLemos MC, Rood RB ( 2010 ) Climate projections and their impact on policy and practice. Wires Climate Change, 1, 670 – 682.en_US
dc.identifier.citedreferenceLim WH, Roderick ML ( 2007 ) An Atlas of the Global Water Cycle Based on the IPCC AR4 Climate Models. ANU E Press, Canberra, Australia.en_US
dc.identifier.citedreferenceLittle EL Jr ( 1971 ) Atlas of United States Trees, vol. 1: Conifers and Important Hardwoods. Washington, DC: US Department of Agriculture. Miscellaneous publication no. 1146.en_US
dc.identifier.citedreferenceLittle EL Jr ( 1977 ) Atlas of United States Trees, vol. 4: Minor Eastern Hardwoods. Washington, DC: US Department of Agriculture. Miscellaneous publication no.1342.en_US
dc.identifier.citedreferenceLoarie SR, Duffy PB, Hamilton H, Asner G, Field CB, Ackerly DD ( 2009 ) The velocity of climate change. Nature, 462, 1052 – 1055.en_US
dc.identifier.citedreferenceMalcolm JR, Markham A, Neilson RP, Garaci M ( 2002 ) Estimated migration rates under scenarios of global climate change. Journal of Biogeography, 29, 835 – 849.en_US
dc.identifier.citedreferenceMcFarlane NA, Scinoca JF, Lazare M, Harvey R, Verseghy D, Li J ( 2005 ) The CCCMa third generation atmospheric general circulation model (AGCM3). CCCMa Internal Report, 25pp.en_US
dc.identifier.citedreferenceMcLachlan J, Clark J, Manos P ( 2005 ) Molecular indicators of tree migration capacity under rapid climate change. Ecology, 86, 2088 – 2098.en_US
dc.identifier.citedreferenceMcLachlan JS, Hellmann JJ, Schwartz MW ( 2007 ) A framework for debate of assisted migration in an era of climate change. Conservation Biology, 21, 297 – 302.en_US
dc.identifier.citedreferenceMcKenney DW, Hutchinson MF, Kesteven JL, Venier LA ( 2001 ) Canada's plant hardiness zones revisited using modern climate interpolation techniques. Canadian Journal of Plant Science, 81, 129 – 143.en_US
dc.identifier.citedreferenceMcKenney DW, Papadopol P, Campbell K, Lawrence K, Hutchinson MF ( 2006b ) Spatial Models of Canadian and North American‐Wide 1971/2000 Minimum and Maximum Temperature, Total Precipitation and Derived Bioclimatic Variables. Sault Ste. Marie (Ontario): Canadian Forest Service Front Line Technical Note no. 106.en_US
dc.identifier.citedreferenceMcKenney DW, Pedlar JH, Lawrence K, Campbell K, Hutchinson MF ( 2007a ) Potential impacts of climate change on the distribution of North American trees. BioScience, 57, 939 – 948.en_US
dc.identifier.citedreferenceMcKenney DW, Pedlar J, Lawrence K, Campbell K, Hutchinson M ( 2007b ) Beyond traditional hardiness zones: using climate envelopes to map plant range limits. BioScience, 57, 929 – 937.en_US
dc.identifier.citedreferenceMcKenney DW, Price D, Papadapol P, Siltanen M, Lawrence K ( 2006a ) High‐resolution climate change scenarios for North America. Sault Ste. Marie (Ontario): Canadian Forest Service Front Line Technical Note no. 107.en_US
dc.identifier.citedreferenceMeehl G, Covey C, Delworth T et al. ( 2007 ) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bulletin of the American Meteorological Society, 88, 1383 – 1394.en_US
dc.identifier.citedreferenceMidgley GF, Davies ID, Albert CH et al. ( 2010 ) BioMove – an integrated platform simulating the dynamic response of species to environmental change. Ecography, 33, 1 – 5.en_US
dc.identifier.citedreferenceNakicenovic N, Swart R ) eds ( 2000 ) Special Report on Emissions Scenarios. University Press, Cambridge, UK.en_US
dc.identifier.citedreferenceNix H ( 1986 ) A biogeographic analysis of Australian elapid snakes. In: Australia Flora and Fauna Series No. 7 – Atlas of Elapid Snakes of Australia (ed Longmore R ), pp. 4 – 15. Bureau of Flora and Fauna, Canberra, Australia.en_US
dc.identifier.citedreferencePearson RG, Dawson TP ( 2003 ) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 361 – 371.en_US
dc.identifier.citedreferencePhillips SJ, Anderson RP, Schapire RE ( 2006 ) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231 – 259.en_US
dc.identifier.citedreferenceRäisänen J ( 2007 ) How reliable are climate models? Tellus, 59A, 2 – 29.en_US
dc.identifier.citedreferenceRoe GH, Baker MB ( 2007 ) Why is climate sensitivity so unpredictable? Science, 318, 629 – 632.en_US
dc.identifier.citedreferenceReichler T, Kim JS ( 2008 ) How well do coupled models simulate today's climate? Bulletin of the American Meteorological Society, 89, 303 – 311.en_US
dc.identifier.citedreferenceRosentrater L ( 2010 ) Representing and using scenarios for responding to climate change. Interdisciplinary Reviews Climate Change, 1, 253 – 259.en_US
dc.identifier.citedreferenceShafer SL, Bartlein PJ, Thompson RS ( 2001 ) Potential changes in the distributions of western North America tree and shrub taxa under future climate scenarios. Ecosystems, 4, 200 – 215.en_US
dc.identifier.citedreferenceSchneider R, Wang X, Boutin S, Hamann A, Farr D ( 2009 ) Potential effects of climate change on ecosystem distribution in Alberta. Canadian Journal Forest Research, 39, 1001 – 1010.en_US
dc.identifier.citedreferenceTrenberth K ( 2010 ) More knowledge, less certainty. Commentary Nature Reports Climate Change, Published online: 21 January 2010, doi: DOI: 10.1038/climate.2010.06en_US
dc.identifier.citedreferenceWoodall CW, Oswalt CM, Westfall JA, Perry CH, Nelson MD, Finley AO ( 2009 ) An indicator of tree migration in forests of the eastern United States. Forest Ecology and Management, 257, 1434 – 1444.en_US
dc.identifier.citedreferenceWoodward FI ( 1987 ) Climate and Plant Distribution. Cambridge University Press, Cambridge, UK.en_US
dc.identifier.citedreferenceWullschleger SD, Tschaplinski TJ, Norby RJ ( 2002 ) Plant water relations at elevated CO 2 – implications for water‐limited environments. Plant, Cell and Environment, 25, 319 – 331.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.