Show simple item record

Canonical Wnt signaling induces skin fibrosis and subcutaneous lipoatrophy: A novel mouse model for scleroderma?

dc.contributor.authorWei, Junen_US
dc.contributor.authorMelichian, Denisaen_US
dc.contributor.authorKomura, Kazuhiroen_US
dc.contributor.authorHinchcliff, Moniqueen_US
dc.contributor.authorLam, Anna P.en_US
dc.contributor.authorLafyatis, Roberten_US
dc.contributor.authorGottardi, Cara J.en_US
dc.contributor.authorMacDougald, Ormond A.en_US
dc.contributor.authorVarga, Johnen_US
dc.date.accessioned2011-11-10T15:32:21Z
dc.date.available2012-07-12T17:42:24Zen_US
dc.date.issued2011-06en_US
dc.identifier.citationWei, Jun; Melichian, Denisa; Komura, Kazuhiro; Hinchcliff, Monique; Lam, Anna P.; Lafyatis, Robert; Gottardi, Cara J.; MacDougald, Ormond A.; Varga, John (2011). "Canonical Wnt signaling induces skin fibrosis and subcutaneous lipoatrophy: A novel mouse model for scleroderma?." Arthritis & Rheumatism 63(6): 1707-1717. <http://hdl.handle.net/2027.42/86862>en_US
dc.identifier.issn0004-3591en_US
dc.identifier.issn1529-0131en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/86862
dc.description.abstractObjective Because aberrant Wnt signaling has been linked with systemic sclerosis (SSc) and pulmonary fibrosis, we sought to investigate the effect of Wnt‐10b on skin homeostasis and differentiation in transgenic mice and in explanted mesenchymal cells. Methods The expression of Wnt‐10b in patients with SSc and in a mouse model of fibrosis was investigated. The skin phenotype and biochemical characteristics of Wnt‐10b–transgenic mice were evaluated. The in vitro effects of ectopic Wnt‐10b were examined in explanted skin fibroblasts and preadipocytes. Results The expression of Wnt‐10b was increased in lesional skin biopsy specimens from patients with SSc and in those obtained from mice with bleomycin‐induced fibrosis. Transgenic mice expressing Wnt‐10b showed progressive loss of subcutaneous adipose tissue accompanied by dermal fibrosis, increased collagen deposition, fibroblast activation, and myofibroblast accumulation. Wnt activity correlated with collagen gene expression in these biopsy specimens. Explanted skin fibroblasts from transgenic mice demonstrated persistent Wnt/β‐catenin signaling and elevated collagen and α‐smooth muscle actin gene expression. Wnt‐10b infection of normal fibroblasts and preadipocytes resulted in blockade of adipogenesis and transforming growth factor β (TGFβ)–independent up‐regulation of fibrotic gene expression. Conclusion SSc is associated with increased Wnt‐10b expression in the skin. Ectopic Wnt‐10b causes loss of subcutaneous adipose tissue and TGFβ‐independent dermal fibrosis in transgenic mice. These findings suggest that Wnt‐10b switches differentiation of mesenchymal cells toward myofibroblasts by inducing a fibrogenic transcriptional program while suppressing adipogenesis. Wnt‐10b–transgenic mice represent a novel animal model for investigating Wnt signaling in the setting of fibrosis.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.titleCanonical Wnt signaling induces skin fibrosis and subcutaneous lipoatrophy: A novel mouse model for scleroderma?en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeriatricsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, Ann Arboren_US
dc.contributor.affiliationotherNorthwestern University Feinberg School of Medicine, Chicago, Illinoisen_US
dc.contributor.affiliationotherBoston University School of Medicine, Boston, Massachusettsen_US
dc.contributor.affiliationotherSection of Rheumatology, Northwestern University Feinberg School of Medicine, 240 East Huron Street, Chicago, IL 60611en_US
dc.identifier.pmid21370225en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86862/1/30312_ftp.pdf
dc.identifier.doi10.1002/art.30312en_US
dc.identifier.sourceArthritis & Rheumatismen_US
dc.identifier.citedreferenceVarga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest 2007; 117: 557 – 67.en_US
dc.identifier.citedreferenceDenton CP, Black CM, Abraham DJ. Mechanisms and consequences of fibrosis in systemic sclerosis. Nat Clin Pract Rheumatol 2006; 2: 134 – 44.en_US
dc.identifier.citedreferenceKrieg T, Abraham D, Lafyatis R. Fibrosis in connective tissue disease: the role of the myofibroblast and fibroblast‐epithelial cell interactions. Arthritis Res Ther 2007; 9 Suppl 2: S4.en_US
dc.identifier.citedreferencePostlethwaite AE, Shigemitsu H, Kanangat S. Cellular origins of fibroblasts: possible implications for organ fibrosis in systemic sclerosis. Curr Opin Rheumatol 2004; 16: 733 – 8.en_US
dc.identifier.citedreferenceVarga J, Pasche B. Transforming growth factor β as a therapeutic target in systemic sclerosis. Nat Rev Rheumatol 2009; 5: 200 – 6.en_US
dc.identifier.citedreferenceRosenbloom J, Castro SV, Jimenez SA. Narrative review: fibrotic diseases: cellular and molecular mechanisms and novel therapies. Ann Intern Med 2010; 152: 159 – 66.en_US
dc.identifier.citedreferenceVan Amerongen R, Nusse R. Towards an integrated view of Wnt signaling in development. Development 2009; 136: 3205 – 14.en_US
dc.identifier.citedreferenceCadigan KM, Liu YI. Wnt signaling: complexity at the surface. J Cell Sci 2006; 119: 395 – 402.en_US
dc.identifier.citedreferenceWillert K, Jones KA. Wnt signaling: is the party in the nucleus? Genes Dev 2006; 20: 1394 – 404.en_US
dc.identifier.citedreferenceKlapholz‐Brown Z, Walmsley GG, Nusse YM, Nusse R, Brown PO. Transcriptional program induced by Wnt protein in human fibroblasts suggests mechanisms for cell cooperativity in defining tissue microenvironments. PLoS One 2007; 2: e945.en_US
dc.identifier.citedreferenceOhtola J, Myers J, Akhtar‐Zaidi B, Zuzindlak D, Sandesara P, Yeh K, et al. β‐catenin has sequential roles in the survival and specification of ventral dermis. Development 2008; 135: 2321 – 9.en_US
dc.identifier.citedreferenceChien AJ, Moon RT. WNTS and WNT receptors as therapeutic tools and targets in human disease processes. Front Biosci 2007; 12: 448 – 57.en_US
dc.identifier.citedreferenceChien AJ, Conrad WH, Moon RT. A Wnt survival guide: from flies to human disease. J Invest Dermatol 2009; 129: 1614 – 27.en_US
dc.identifier.citedreferenceMacDonald BT, Tamai K, He X. Wnt/β‐catenin signaling: components, mechanisms, and diseases. Dev Cell 2009; 17: 9 – 26.en_US
dc.identifier.citedreferenceChilosi M, Poletti V, Zamo A, Lestani M, Montagna L, Piccoli P, et al. Aberrant Wnt/β‐catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol 2003; 162: 1495 – 502.en_US
dc.identifier.citedreferenceSelman M, Pardo A, Kaminski N. Idiopathic pulmonary fibrosis: aberrant recapitulation of developmental programs? PLoS Med 2008; 5: e62.en_US
dc.identifier.citedreferenceLongo KA, Wright WS, Kang S, Gerin I, Chiang SH, Lucas PC, et al. Wnt10b inhibits development of white and brown adipose tissues. J Biol Chem 2004; 279: 35503 – 9.en_US
dc.identifier.citedreferenceBennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD, et al. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci U S A 2005; 102: 3324 – 9.en_US
dc.identifier.citedreferenceBayle J, Fitch J, Jacobsen K, Kumar R, Lafyatis R, Lemaire R. Increased expression of Wnt2 and SFRP4 in Tsk mouse skin: role of Wnt signaling in altered dermal fibrillin deposition and systemic sclerosis. J Invest Dermatol 2008; 128: 871 – 81.en_US
dc.identifier.citedreferenceLemaire R, Farina G, Bayle J, Dimarzio M, Pendergrass SA, Milano A, et al. Antagonistic effect of the matricellular signaling protein CCN3 on TGF‐β‐ and Wnt‐mediated fibrillinogenesis in systemic sclerosis and Marfan syndrome [published erratum appears in J Invest Dermatol 2010;130:2517]. J Invest Dermatol 2010; 130: 1514 – 23.en_US
dc.identifier.citedreferenceWu M, Melichian DS, Chang E, Warner‐Blankenship M, Ghosh AK, Varga J. Rosiglitazone abrogates bleomycin‐induced scleroderma and blocks profibrotic responses through peroxisome proliferator‐activated receptor‐γ. Am J Pathol 2009; 174: 519 – 33.en_US
dc.identifier.citedreferenceNadiri A, Kuchler‐Bopp S, Haikel Y, Lesot H. Immunolocalization of BMP‐2/‐4, FGF‐4, and WNT10b in the developing mouse first lower molar. J Histochem Cytochem 2004; 52: 103 – 12.en_US
dc.identifier.citedreferenceLakos G, Takagawa S, Chen SJ, Ferreira AM, Han G, Masuda K, et al. Targeted disruption of TGF‐β/Smad3 signaling modulates skin fibrosis in a mouse model of scleroderma. Am J Pathol 2004; 165: 203 – 17.en_US
dc.identifier.citedreferenceTakagawa S, Lakos G, Mori Y, Yamamoto T, Nishioka K, Varga J. Sustained activation of fibroblast transforming growth factor‐β/Smad signaling in a murine model of scleroderma. J Invest Dermatol 2003; 121: 41 – 50.en_US
dc.identifier.citedreferenceBhattacharyya S, Wei J, Melichian DS, Milbrandt J, Takehara K, Varga J. The transcriptional cofactor nab2 is induced by TGF‐β and suppresses fibroblast activation: physiological roles and impaired expression in scleroderma. PLoS One 2009; 4: e7620.en_US
dc.identifier.citedreferenceHausman GJ. Techniques for studying adipocytes. Stain Technol 1981; 56: 149 – 54.en_US
dc.identifier.citedreferenceRamirez‐Zacarias JL, Castro‐Munozledo F, Kuri‐Harcuch W. Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with oil red O. Histochemistry 1992; 97: 493 – 7.en_US
dc.identifier.citedreferenceChen SJ, Yuan W, Mori Y, Levenson A, Trojanowska M, Varga J. Stimulation of type I collagen transcription in human skin fibroblasts by TGF‐β: involvement of Smad 3. J Invest Dermatol 1999; 112: 49 – 57.en_US
dc.identifier.citedreferenceGhosh AK, Bhattacharyya S, Lakos G, Chen SJ, Mori Y, Varga J. Disruption of transforming growth factor β signaling and profibrotic responses in normal skin fibroblasts by peroxisome proliferator–activated receptor γ. Arthritis Rheum 2004; 50: 1305 – 18.en_US
dc.identifier.citedreferenceGottardi CJ, Gumbiner BM. Role for ICAT in β‐catenin‐dependent nuclear signaling and cadherin functions. Am J Physiol Cell Physiol 2004; 286: C747 – 56.en_US
dc.identifier.citedreferenceWu M, Varga J. In perspective: murine models of scleroderma. Curr Rheumatol Rep 2008; 10: 173 – 82.en_US
dc.identifier.citedreferenceMartinez‐Ferrer M, Afshar‐Sherif AR, Uwamariya C, de Crombrugghe B, Davidson JM, Bhowmick NA. Dermal transforming growth factor‐β responsiveness mediates wound contraction and epithelial closure. Am J Pathol 2010; 176: 98 – 107.en_US
dc.identifier.citedreferenceWei J, Bhattacharyya S, Varga J. Peroxisome proliferator‐activated receptor γ: innate protection from excessive fibrogenesis and potential therapeutic target in systemic sclerosis. Curr Opin Rheumatol 2010; 22: 671 – 6.en_US
dc.identifier.citedreferenceWei J, Ghosh AK, Sargent JL, Komura K, Wu M, Huang QQ, et al. PPARγ downregulation by TGFβ in fibroblast and impaired expression and function in systemic sclerosis: a novel mechanism for progressive fibrogenesis. PLoS One 5: e13778.en_US
dc.identifier.citedreferencePrestwich TC, Macdougald OA. Wnt/β‐catenin signaling in adipogenesis and metabolism. Curr Opin Cell Biol 2007; 19: 612 – 7.en_US
dc.identifier.citedreferenceBrack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 2007; 317: 807 – 10.en_US
dc.identifier.citedreferenceCheon SS, Cheah AY, Turley S, Nadesan P, Poon R, Clevers H, et al. β‐catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds. Proc Natl Acad Sci U S A 2002; 99: 6973 – 8.en_US
dc.identifier.citedreferenceChang W, Wei K, Jacobs SS, Upadhyay D, Weill D, Rosen GD. SPARC suppresses apoptosis of idiopathic pulmonary fibrosis fibroblasts through constitutive activation of β‐catenin. J Biol Chem 2010; 285: 8196 – 206.en_US
dc.identifier.citedreferenceChen S, McLean S, Carter DE, Leask A. The gene expression profile induced by Wnt 3a in NIH 3T3 fibroblasts. J Cell Commun Signal 2007; 1: 175 – 83.en_US
dc.identifier.citedreferenceGustafson B, Smith U. Activation of canonical wingless‐type MMTV integration site family (Wnt) signaling in mature adipocytes increases β‐catenin levels and leads to cell dedifferentiation and insulin resistance. J Biol Chem 2010; 285: 14031 – 41.en_US
dc.identifier.citedreferenceHe W, Tan R, Dai C, Li Y, Wang D, Hao S, et al. Plasminogen activator inhibitor‐1 is a transcriptional target of the canonical pathway of Wnt/β‐catenin signaling. J Biol Chem 2010; 285: 24665 – 75.en_US
dc.identifier.citedreferenceLee CH, Shah B, Moioli EK, Mao JJ. CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model. J Clin Invest 2010; 120: 3340 – 9.en_US
dc.identifier.citedreferenceSonnylal S, Shi‐wen X, Leoni P, Naff K, Van Pelt CS, Nakamura H, et al. Selective expression of connective tissue growth factor in fibroblasts in vivo promotes systemic tissue fibrosis. Arthritis Rheum 2010; 62: 1523 – 32.en_US
dc.identifier.citedreferenceKonigshoff M, Balsara N, Pfaff EM, Kramer M, Chrobak I, Seeger W, et al. Functional Wnt signaling is increased in idiopathic pulmonary fibrosis. PLoS One 2008; 3: e2142.en_US
dc.identifier.citedreferenceKonigshoff M, Kramer M, Balsara N, Wilhelm J, Amarie OV, Jahn A, et al. WNT1‐inducible signaling protein‐1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. J Clin Invest 2009; 119: 772 – 87.en_US
dc.identifier.citedreferenceSelman M, Pardo A, Barrera L, Estrada A, Watson SR, Wilson K, et al. Gene expression profiles distinguish idiopathic pulmonary fibrosis from hypersensitivity pneumonitis. Am J Respir Crit Care Med 2006; 173: 188 – 98.en_US
dc.identifier.citedreferenceHenderson WR Jr, Chi EY, Ye X, Nguyen C, Tien YT, Zhou B, et al. Inhibition of Wnt/β‐catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci U S A 2010; 107: 14309 – 14.en_US
dc.identifier.citedreferenceLam AP, Flozak AS, Russell S, Wei J, Jain M, Mutlu GM, et al. Nuclear β‐catenin is increased in SSc pulmonary fibrosis and promotes lung fibroblast migration and proliferation. Am J Respir Cell Mol Biol 2011. E‐pub ahead of print.en_US
dc.identifier.citedreferenceWhitfield ML, Finlay DR, Murray JI, Troyanskaya OG, Chi JT, Pergamenschikov A, et al. Systemic and cell type‐specific gene expression patterns in scleroderma skin. Proc Natl Acad Sci U S A 2003; 100: 12319 – 24.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.