Show simple item record

Retrospective‐cost‐based adaptive model refinement for the ionosphere and thermosphere

dc.contributor.authorD'Amato, Anthony M.en_US
dc.contributor.authorRidley, Aaron J.en_US
dc.contributor.authorBernstein, Dennis S.en_US
dc.date.accessioned2011-11-10T15:32:38Z
dc.date.available2012-10-01T18:34:21Zen_US
dc.date.issued2011-08en_US
dc.identifier.citationD'Amato, Anthony M.; Ridley, Aaron J.; Bernstein, Dennis S. (2011). "Retrospective‐cost‐based adaptive model refinement for the ionosphere and thermosphere." Statistical Analysis and Data Mining 4(4): 446-458. <http://hdl.handle.net/2027.42/86874>en_US
dc.identifier.issn1932-1864en_US
dc.identifier.issn1932-1872en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/86874
dc.description.abstractMathematical models of physical phenomena are of critical importance in virtually all applications of science and technology. This paper addresses the problem of how to use data to improve the fidelity of a given model. We approach this problem using retrospective cost optimization, which uses data to recursively update an unknown subsystem interconnected to a known system. Applications of this technique are relevant to applications that depend on large‐scale models based on first‐principles physics, such as the global ionosphere–thermosphere model (GITM). Using GITM as the truth model, we demonstrate that measurements can be used to identify unknown physics. Specifically, we estimate static thermal conductivity parameters, as well as a dynamic cooling process. © 2011 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 4: 446–458, 2011en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherModel Refinementen_US
dc.subject.otherAdaptiveen_US
dc.subject.otherIonosphereen_US
dc.subject.otherThermosphereen_US
dc.subject.otherSystem Identificationen_US
dc.subject.otherEstimationen_US
dc.titleRetrospective‐cost‐based adaptive model refinement for the ionosphere and thermosphereen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumDepartment of Atmospheric Oceanic and Space Science, University of Michigan, Mi, 48109, USAen_US
dc.contributor.affiliationumDepartment of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86874/1/10127_ftp.pdf
dc.identifier.doi10.1002/sam.10127en_US
dc.identifier.sourceStatistical Analysis and Data Miningen_US
dc.identifier.citedreferenceJ.‐N. Juang, Applied System Identification, New Jersey, Prentice Hall, 1993.en_US
dc.identifier.citedreferenceL. Ljung, System Identification: Theory for the User ( 2nd ed. ), New Jersey, Prentice Hall, 1999.en_US
dc.identifier.citedreferenceP. Van Overschee and B. De Moor, Subspace Identification for Linear Systems: Theory, Implementation, Applications, Berlin, Kluwer, 1996.en_US
dc.identifier.citedreferenceH. J. Palanthandalam‐Madapusi, S. Gillijns, B. De Moor, and D. S. Bernstein, Subsystem Identification for Nonlinear Model Updating, Proc Amer Contr Conf ( 2006 ), 3056 – 3061.en_US
dc.identifier.citedreferenceJ. S. Bendat, Nonlinear Systems Techniques and Applications, New York, Wiley, 1989.en_US
dc.identifier.citedreferenceJ. Sjoberg, Q. Zhang, L. Ljung, A. Benveniste, B. Deylon, P. Glorennec, H. Hjalmarsson, A. Juditsky, Nonlinear black‐box modeling in system identification: a unified overview, Automatica 31 (12) ( 1995 ), 1691 – 1724.en_US
dc.identifier.citedreferenceR. Haber and L. Keviczky, Nonlinear System Identification–Input‐Output Modeling Approach Vol. 1: Nonlinear System Parameter Identification, Norwell, MA, USA, Kluwer Academic Publishers, 1999.en_US
dc.identifier.citedreferenceO. Nelles, Nonlinear System Identification, New Jersey, Springer, 2001.en_US
dc.identifier.citedreferenceH. Palanthandalam‐Madapusi, D. S. Bernstein, and A. J. Ridley, Space weather forecasting: identifying periodically switching block‐structured models to predict magnetic‐field fluctuations, IEEE Control Sys Mag 27 ( 2007 ), 109 – 123.en_US
dc.identifier.citedreferenceC. Minas and D. Inman, Matching finite element models to modal data, J Vibration Acoust 112 ( 1990 ), 84 – 92.en_US
dc.identifier.citedreferenceM. I. Friswell and J. E. Mottershead, Finite Element Model Updating in Structural Dynamics, Dordrecht, Kluwer, 1995.en_US
dc.identifier.citedreferenceS. O. R. Moheimani, Model correction for sampled‐data models of structures, J Guid Control Dyn 24 (3) ( 2001 ), 634 – 637.en_US
dc.identifier.citedreferenceJ. B. Carvalho, B. N. Datta, W. Lin, and C. Wang, Symmetry preserving eigenvalue embedding in finite‐element model updating of vibrating structures, J Sound Vibration 290 ( 2006 ), 839 – 864.en_US
dc.identifier.citedreferenceF. D'Andrea and R. Vautard, Reducing systematic errors by empirically correcting model errors, Tellus, 52A ( 2000 ), 21 – 41.en_US
dc.identifier.citedreferenceT. DelSole and A. Y. Hou, Empirical correction of a dynamical model. Part I: Fundamental issues, Mon Weather Rev 127 (11) ( 2001 ), 2533 – 2545.en_US
dc.identifier.citedreferenceC. M. Danforth, E. Kalnay, and T. Miyoshi, Estimating and correcting global weather model error, Mon Weather Rev 135 (2) ( 2007 ), 281 – 299.en_US
dc.identifier.citedreferenceS. Mijanovic, G. E. Stewart, G. A. Dumont, and M. S. Davies, A controller perturbation technique for transferring closed‐loop stability between systems, Automatica 39 ( 2003 ), 1783 – 1791.en_US
dc.identifier.citedreferenceH. Palanthandalam‐Madapusi, E. L. Renk, and D. S. Bernstein. Data‐based model refinement for linear and Hammerstein systems using subspace identification and adaptive disturbance rejection. In Proceedings of Conference on Control Applications, Toronto, Canada, ( 2005 ), 1630 – 1635.en_US
dc.identifier.citedreferenceM. A. Santillo, A. M. D'Amato, and D. S. Bernstein, System identification using a retrospective correction filter for adaptive feedback model updating, In Proceedings of the American Control Conference, St. Louis, MO, ( 2009 ), 4392 – 4397.en_US
dc.identifier.citedreferenceA. M. D'Amato and D. S. Bernstein, Linear fractional transformation identification using retrospective cost optimization, Proceedings of SYSID, Saint‐Malo, France, ( 2009 ), 450 – 455.en_US
dc.identifier.citedreferenceA. M. D'Amato, B. J. Arritt, J. A. Banik, E. V. Ardelean, and D. S. Bernstein, Structural health determination and model refinement for a deployable composite boom, AIAA SDM Conference, Palm Springs, CA, ( 2009 ), AIAA‐2009‐2373.en_US
dc.identifier.citedreferenceA. M. D'Amato, A. R. Wu, K. S. Mitchell, S. L. Kukreja, and D. S. Bernstein, Damage localization for structural health monitoring using retrospective cost model refinement, AIAA SDM Conference, Orlando, FL, ( 2010 ), AIAA‐2010‐2628.en_US
dc.identifier.citedreferenceJ. B. Hoagg and D. S. Bernstein, Cumulative retrospective cost adaptive control with rls‐based optimization, Proceedings of the American Control Conference, Baltimore, MD, ( 2010 ), 4016 – 4021.en_US
dc.identifier.citedreferenceR. Venugopal and D. S. Bernstein, Adaptive disturbance rejection using ARMARKOV system representations, IEEE Trans Control Sys Tech 8 ( 2000 ), 257 – 269.en_US
dc.identifier.citedreferenceJ. B. Hoagg, M. A. Santillo, and D. S. Bernstein, Discrete‐time adaptive command following and disturbance rejection for minimum phase systems with unknown exogenous dynamics, IEEE Trans Autom Control 53 ( 2008 ), 912 – 928.en_US
dc.identifier.citedreferenceM. A. Santillo and D. S. Bernstein, Adaptive control based on retrospective cost optimization, AIAA J Guid Control Dyn 33 ( 2010 ), 289 – 304.en_US
dc.identifier.citedreferenceA. J. Ridley, Y. Deng, and G. Tòth, The global ionosphere‐thermosphere model, J Atmos Sol‐Terr Phys 68 ( 2006 ), 839.en_US
dc.identifier.citedreferenceM. S. Holzel, M. A. Santillo, J. B. Hoagg, and D. S. Bernstein, Adaptive control of the NASA generic transport model using retrospective cost optimization, Proceedings of the AIAA Guidance, Navigation and Control Conference, Chicago, IL, ( 2009 ), AIAA‐2009‐5616.en_US
dc.identifier.citedreferenceM. S. Fledderjohn, Y.‐C. Cho, J. B. Hoagg, M. A. Santillo, W. Shyy, and D. S. Bernstein, Retrospective cost adaptive flow control using a dielectric barrier discharge actuator, In Proceedings of the AIAA Guidance, Navigation and Control Conference, Chicago, IL, ( 2009 ), AIAA‐2009‐5857.en_US
dc.identifier.citedreferenceM. A. Santillo, M. S. Holzel, J. B. Hoagg, and D. S. Bernstein, Adaptive control using retrospective cost optimization with rls‐based estimation for concurrent markov‐parameter updating, Proceedings of the Conference on Decision Control, Shanghai, China, ( 2009 ), 3466 – 3471.en_US
dc.identifier.citedreferenceA. M. D'Amato, B. O. S. Teixeira, and D. S. Bernstein, Semiparametric identification of Wiener systems using a single harmonic input and retrospective cost optimization, IET Contr Theory Appl, (to appear).en_US
dc.identifier.citedreferenceA. M. D'Amato, K. S. Mitchell, B. O. S. Teixeira, and D. S. Bernstein, Semiparametric identification of hammerstein systems using input reconstruction and a single harmonic input, In Proceedings of the Conference on Decision Control, Atlanta, GA, ( 2010 ), 6365 – 6370.en_US
dc.identifier.citedreferenceH. Sane and D. S. Bernstein, Active noise control using an acoustic servovalve, In Proceedings of American Control Conference, Philadelphia, PA, ( 1998 ), 2621 – 2625.en_US
dc.identifier.citedreferenceS. L. Lacy, R. Venugopal, and D. S. Bernstein, ARMARKOV adaptive control of self‐excited oscillations of a ducted flame, In Proceedings of the Conference on Decision Control, Tampa, FL, ( 1998 ), 4527 – 4528.en_US
dc.identifier.citedreferenceH. S. Sane, R. Venugopal, and D. S. Bernstein, Disturbance rejection using self‐tuning ARMARKOV adaptive control with simultaneous identification, IEEE Transactions on Control Systems Technology 9 (1) ( 2001 ), 101 – 106.en_US
dc.identifier.citedreferenceE. Yigit and A. J. Ridley, Effects of high‐latitude thermosphere heating at various scale sizes simulated by a nonhydrostatic global thermosphere‐ionosphere model, J Atmos Sol‐Terr Phys 73 ( 2010 ), 592 – 600.en_US
dc.identifier.citedreferenceR. G. Roble, E. C. Ridley, A. D. Richmond, and R. E. Dickinson, A coupled thermosphere/ionosphere general circulation model, Geophys Res Lett 15 ( 1988 ), 1325.en_US
dc.identifier.citedreferenceT.J. Fuller‐Rowell and D. Rees, A three‐dimensional, time‐dependent, global model of the thermosphere, J Atmos Sci 37 ( 1980 ), 2545.en_US
dc.identifier.citedreferenceY. Deng, A. D. Richmond, A. J. Ridley, and H.‐L. Liu, Assessment of the non‐hydrostatic effect on the upper atmosphere using a general circulation model (gcm), Geophys Res Lett 35 ( 2008 ), L01104.en_US
dc.identifier.citedreferenceC. Jablonowski, M. Herzog, J. E. Penner, R. C. Oehmke, Q. F. Stout, B. van Leer, and K. G. Powell, Block‐structured adaptive grids on the sphere: advection experiments, Mon Weather Rev 134 ( 2006 ), 3691 – 3713.en_US
dc.identifier.citedreferenceA. M. D'Amato, A. J. Ridley, and D. S. Bernstein, Adaptive model refinement for the ionosphere and thermosphere, In NASA CIDU, Mountain View, CA, 2010. ( https://c3.ndc.nasa.gov/dashlink/resources/240 ) (accessed 2010).en_US
dc.identifier.citedreferenceA. M. D'Amato, S. L. Kukreja, and D. S. Bernstein, “Data‐based” model refinement using retrospective cost optimization, In Proceedings of the AIAA Guidance, Navigation and Control Conference, Toronto, ON, ( 2010 ), AIAA‐2010‐812786.en_US
dc.identifier.citedreferenceJ. B. Hoagg and D. S. Bernstein, Retrospective cost adaptive control for nonminimum‐phase discrete‐time systems part 1: the ideal controller and error system, part 2: the adaptive controllera nd stability analysis, In Proceedings of the Conference on Decision Control, Atlanta, GA, ( 2010 ), 893 – 904.en_US
dc.identifier.citedreferenceD. S. Bernstein, Matrix Mathematics ( 2nd ed. ), New Jersey, Princeton University Press, 2009.en_US
dc.identifier.citedreferenceR. W. Schunk and A. F. Nagy, Ionospheres, Cambridge, UK, Cambridge Press, 2000.en_US
dc.identifier.citedreferenceD. J. Pawlowski, A. J. Ridley, Quantifying the effect of thermospheric parameterization in a global model, J Atmos Sol‐Terr Phys 71 ( 2009 ), 2017 – 2026.en_US
dc.identifier.citedreferenceC. A. Barth, K. D. Mankoff, S. M. Bailey, and S. C. Solomon, Global observations of nitric oxide in the thermosphere, J Geophys Res 108 (A1) ( 2003 ), 1027.en_US
dc.identifier.citedreferenceD. R. Marsh, S. C. Solomon, and A. E. Reynolds, Empirical model of nitric oxide in the lower thermosphere, J Geophys Res 109 ( 2004 ), A07301.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.