Show simple item record

Using Charge to Control the Functional Properties of Self‐Assembled Nanopores in Membranes

dc.contributor.authorMacrae, Michael X.en_US
dc.contributor.authorSchlamadinger, Dianaen_US
dc.contributor.authorKim, Judy E.en_US
dc.contributor.authorMayer, Michaelen_US
dc.contributor.authorYang, Jerryen_US
dc.date.accessioned2011-11-10T15:33:14Z
dc.date.available2012-09-04T15:27:31Zen_US
dc.date.issued2011-07-18en_US
dc.identifier.citationMacrae, Michael X.; Schlamadinger, Diana; Kim, Judy E.; Mayer, Michael; Yang, Jerry (2011). "Using Charge to Control the Functional Properties of Self‐Assembled Nanopores in Membranes." Small 7(14): 2016-2020. <http://hdl.handle.net/2027.42/86890>en_US
dc.identifier.issn1613-6810en_US
dc.identifier.issn1613-6829en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/86890
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherGramicidin Aen_US
dc.subject.otherNanoporesen_US
dc.subject.otherPlanar Lipid Bilayers (BLM)en_US
dc.subject.otherIon Channelsen_US
dc.subject.otherSensorsen_US
dc.titleUsing Charge to Control the Functional Properties of Self‐Assembled Nanopores in Membranesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, Departments of Biomedical Engineering and Chemical Engineering, Ann Arbor, MI, 48109‐2110, USAen_US
dc.contributor.affiliationumUniversity of Michigan, Departments of Biomedical Engineering and Chemical Engineering, Ann Arbor, MI, 48109‐2110, USAen_US
dc.contributor.affiliationotherUniversity of California – San Diego, Department of Chemistry and Biochemistry, La Jolla, CA 92093‐0358, USAen_US
dc.contributor.affiliationotherUniversity of California – San Diego, Department of Chemistry and Biochemistry, La Jolla, CA 92093‐0358, USA.en_US
dc.identifier.pmid21626687en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86890/1/smll_201100394_sm_suppl.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86890/2/2016_ftp.pdf
dc.identifier.doi10.1002/smll.201100394en_US
dc.identifier.sourceSmallen_US
dc.identifier.citedreferenceJ. W. Steed, J. L. Atwood, Supramolecular Chemistry, John Wiley & Sons Inc, Chichester, UK 2009.en_US
dc.identifier.citedreferenceR. Breslow, Acc. Chem. Res. 1995, 28, 146.en_US
dc.identifier.citedreferenceJ. M. Lehn, J. Chem. Sci. 1994, 106, 915.en_US
dc.identifier.citedreferenceJ. D. Badjić, A. Nelson, S. J. Cantrill, W. B. Turnbull, J. F. Stoddart, Acc. Chem. Res. 2005, 38, 723.en_US
dc.identifier.citedreferenceB. Hille, Ionic Channels of Excitable Membranes, 2nd ed., Sinauer Associates, Sunderland, 1992.en_US
dc.identifier.citedreferenceH. Bayley, P. S. Cremer, Nature 2001, 413, 226.en_US
dc.identifier.citedreferenceN. Sakai, J. Mareda, S. Matile, Mol. BioSyst. 2007, 3, 658.en_US
dc.identifier.citedreferenceA. L. Sisson, M. R. Shah, S. Bhosale, S. Matile, Chem. Soc. Rev. 2006, 35, 1269.en_US
dc.identifier.citedreferenceN. Madhavan, E. C. Robert, M. S. Gin, Angew. Chem., Int. Ed. 2005, 44, 7584.en_US
dc.identifier.citedreferenceH. J. Apell, E. Bamberg, H. Alpes, J. Membr. Biol. 1979, 50, 271.en_US
dc.identifier.citedreferenceH. J. Apell, E. Bamberg, H. Alpes, P. Läuger, J. Membr. Biol. 1977, 31, 171.en_US
dc.identifier.citedreferenceH. J. Apell, E. Bamberg, P. Läuger, (BBA)‐Biomembranes 1979, 552, 369.en_US
dc.identifier.citedreferenceH. Bayley, Mol. BioSyst. 2007, 3, 645.en_US
dc.identifier.citedreferenceH. Bayley, L. Jayasinghe, Mol. Membr. Biol. 2004, 21, 209.en_US
dc.identifier.citedreferenceH. Bayley, Nature 2009, 459, 651.en_US
dc.identifier.citedreferenceS. Blake, T. Mayer, M. Mayer, J. Yang, ChemBioChem 2006, 7, 433.en_US
dc.identifier.citedreferenceR. Capone, S. Blake, M. R. Restrepo, J. Yang, M. Mayer, J. Am. Chem. Soc. 2007, 129, 9737.en_US
dc.identifier.citedreferenceB. A. Cornell, V. L. B. Braach‐Maksvytis, L. G. King, P. D. J. Osman, B. Raguse, L. Wieczorek, R. J. Pace, Nature 1997, 387, 580.en_US
dc.identifier.citedreferenceS. Futaki, Y. J. Zhang, T. Kiwada, I. Nakase, T. Yagami, S. Oiki, Y. Sugiura, Bioorg. Med. Chem. 2004, 12, 1343.en_US
dc.identifier.citedreferenceS. Matile, N. Sakai, J. Mareda, J. Kumaki, E. Yashima, J. Recept. Signal Transduct. Res. 2006, 26, 461.en_US
dc.identifier.citedreferenceN. Ashkenasy, J. Sanchez‐Quesada, M. R. Ghadiri, H. Bayley, Angew. Chem., Int. Ed. 2005, 44, 1401.en_US
dc.identifier.citedreferenceM. R. Banghart, M. Volgraf, D. Trauner, Biochemistry 2006, 45, 15129.en_US
dc.identifier.citedreferenceG. W. Gokel, P. H. Schlesinger, N. K. Djedovic, R. Ferdani, E. C. Harder, J. X. Hu, W. M. Leevy, J. Pajewska, R. Pajewski, M. E. Weber, Bioorg. Med. Chem. 2004, 12, 1291.en_US
dc.identifier.citedreferenceA. Hirano, M. Wakabayashi, Y. Matsuno, M. Sugawara, Biosens. Bioelectron. 2003, 18, 973.en_US
dc.identifier.citedreferenceP. Schoen, T. H. Degefa, S. Asaftei, W. Meyer, L. Walder, J. Am. Chem. Soc. 2005, 127, 11486.en_US
dc.identifier.citedreferenceS. Terrettaz, M. Mayer, H. Vogel, Langmuir 2003, 19, 5567.en_US
dc.identifier.citedreferenceV. Borisenko, D. C. Burns, Z. Zhang, G. A. Woolley, J. Am. Chem. Soc. 2000, 122, 6364.en_US
dc.identifier.citedreferenceM. Banghart, K. Borges, E. Isacoff, D. Trauner, R. H. Kramer, Nat. Neurosci. 2004, 7, 1381.en_US
dc.identifier.citedreferenceJ. J. Chambers, M. R. Banghart, D. Trauner, R. H. Kramer, J. Neurophysiol. 2006, 96, 2792.en_US
dc.identifier.citedreferenceD. Trauner, Angew. Chem., Int. Ed. 2003, 42, 5671.en_US
dc.identifier.citedreferenceS. Szobota, P. Gorostiza, F. Del Bene, C. Wyart, D. L. Fortin, K. D. Kolstad, O. Tulyathan, M. Volgraf, R. Numano, H. L. Aaron, Neuron 2007, 54, 535.en_US
dc.identifier.citedreferenceA. Kocer, M. Walko, W. Meijberg, B. L. Feringa, Science 2005, 309, 755.en_US
dc.identifier.citedreferenceP. V. Jog, M. S. Gin, Org. Lett. 2008, 10, 3693.en_US
dc.identifier.citedreferenceD. L. Fortin, M. R. Banghart, T. W. Dunn, K. Borges, D. A. Wagenaar, Q. Gaudry, M. H. Karakossian, T. S. Otis, W. B. Kristan, D. Trauner, Nat. Methods 2008, 5, 331.en_US
dc.identifier.citedreferenceT. Lougheed, V. Borisenko, T. Hennig, K. Rück‐Braun, G. A. Woolley, Org. Biomol. Chem. 2004, 2, 2798.en_US
dc.identifier.citedreferenceO. S. Andersen, R. E. Koeppe, B. Roux, 2 Gramicidin Channels: Versatile Tools, Springer, New York 2007.en_US
dc.identifier.citedreferenceB. Roux, Acc. Chem. Res. 2002, 35, 366.en_US
dc.identifier.citedreferenceM. X. Macrae, S. Blake, M. Mayer, J. Yang, J. Am. Chem. Soc. 2010, 132, 1766.en_US
dc.identifier.citedreferenceS. Blake, R. Capone, M. Mayer, J. Yang, Bioconjugate Chem. 2008, 19, 1614.en_US
dc.identifier.citedreferenceS. Majd, E. C. Yusko, A. D. MacBriar, J. Yang, M. Mayer, J. Am. Chem. Soc. 2009, 131, 16119.en_US
dc.identifier.citedreferenceS. Majd, E. C. Yusko, Y. N. Billeh, M. X. Macrae, J. Yang, M. Mayer, Curr. Opin. Biotech. 2010, 4, 439.en_US
dc.identifier.citedreferenceT. I. Rokitskaya, M. X. Macrae, S. Blake, N. S. Egorova, E. A. Kotova, J. Yang, Y. N. Antonenko, J. Phys.: Condens. Matter 2010, 22, 454118.en_US
dc.identifier.citedreferenceJ. A. Lundbæk, A. M. Maer, O. S. Andersen, Biochemistry 1997, 36, 5695.en_US
dc.identifier.citedreferenceJ. A. Lundbæk, J. Phys.: Condens. Matter 2006, 18, S1305.en_US
dc.identifier.citedreferenceO. S. Andersen, R. E. Koeppe, Annu. Rev. Biophys. Biomol. Struct. 2007, 36, 107.en_US
dc.identifier.citedreferenceJ. A. Lundbæk, R. E. Koeppe, O. S. Andersen, Proc. Natl. Acad. Sci. USA 2010, 107, 15427.en_US
dc.identifier.citedreferenceThe lifetimes for channels formed from homodimers of 2 or 3 were shorter than for native gA ( 1 ) at both low and high ionic strength. One possible reason to consider for this observation is the existence of repulsive Coulombic effects between two positive charges in homodimers of 2 ‐ 2 or between two negative charges in homodimers of 3 ‐ 3 across the membrane, which could contribute slightly towards destabilization of the pores. The insulating effects of the lipid bilayer membrane, [5] however, make such repulsive Columbic interactions across the membrane unlikely (personal communication with Sergey M. Bezrukov). The measured lifetime of a heterodimeric channel comprising 2 and 3 in DiPhyPC lipids in 0.1 M CsCl was indistinguishable (within error) from the lifetime of a homodimeric channel of native gA (data not shown), further supporting that Coulombic effects between charged groups on gA across the membrane likely do not significantly affect the lifetime of the channel.en_US
dc.identifier.citedreferenceM. D. Becker, D. V. Greathouse, R. E. Koeppe, O. S. Andersen, Biochemistry 1991, 30, 8830.en_US
dc.identifier.citedreferenceO. S. Andersen, D. V. Greathouse, L. L. Providence, M. D. Becker, R. E. Koeppe, J. Am. Chem. Soc. 1998, 120, 5142.en_US
dc.identifier.citedreferenceV. Fonseca, P. Daumas, L. Ranjalahy‐Rasoloarijao, F. Heitz, R. Lazaro, Y. Trudelle, O. S. Andersen, Biochemistry 1992, 31, 5340.en_US
dc.identifier.citedreferenceJ. Girshman, D. V. Greathouse, Biophys. J. 1997, 73, 1310.en_US
dc.identifier.citedreferenceH. Sun, D. V. Greathouse, O. S. Andersen, R. E. Koeppe, J. Biol. Chem. 2008, 283, 22233.en_US
dc.identifier.citedreferenceA. E. Daily, J. H. Kim, D. V. Greathouse, O. S. Andersen, R. E. Koeppe, Biochemistry 2010, 49, 6856.en_US
dc.identifier.citedreferenceSeveral additional factors have been shown to influence channel lifetimes, including modification to the N‐terminus Hydrogen bonding network, [53,67,68] subsititution or chemical alteration of the tryptophan sidechains. [49,52,66]en_US
dc.identifier.citedreferenceM. Goulian, O. N. Mesquita, D. K. Fygenson, C. Nielsen, O. S. Andersen, A. Libchaber, Biophys. J. 1998, 74, 328.en_US
dc.identifier.citedreferenceS. M. Bezrukov, Curr. Opin. Colloid In. Sci. 2000, 5, 237.en_US
dc.identifier.citedreferenceF. N. R. Petersen, M. Jensen, C. H. Nielsen, Biophys. J. 2005, 89, 3985.en_US
dc.identifier.citedreferenceT. K. Rostovtseva, H. I. Petrache, N. Kazemi, E. Hassanzadeh, S. M. Bezrukov, Biophys. J. 2008, 94, L23.en_US
dc.identifier.citedreferenceJ. P. Gallivan, D. A. Dougherty, Proc. Natl. Acad. Sci. USA 1999, 96, 9459.en_US
dc.identifier.citedreferenceM. P. Aliste, J. L. MacCallum, D. P. Tieleman, Biochemistry 2003, 42, 8976.en_US
dc.identifier.citedreferenceH. C. Gaede, W. M. Yau, K. Gawrisch, J. Phys. Chem. B 2005, 109, 13014.en_US
dc.identifier.citedreferenceE. K. Esbjörner, C. E. B. Caesar, B. Albinsson, P. Lincoln, B. Nordén, Biochem. Biophys. Res. Comm. 2007, 361, 645.en_US
dc.identifier.citedreferenceR. R. Ketchem, W. Hu, T. A. Cross, Science 1993, 261, 1457.en_US
dc.identifier.citedreferenceJ. A. Lundbaek, O. S. Andersen, J. Gen. Physiol. 1994, 104, 645.en_US
dc.identifier.citedreferenceD. E. Schlamadinger, M. M. Daschbach, G. W. Gokel, J. E. Kim, J. Raman Spectrosc. 2011, 42, 633.en_US
dc.identifier.citedreferenceD. A. Kelkar, A. Chattopadhyay, BBA–Biomembranes 2007, 1768, 2011.en_US
dc.identifier.citedreferenceJ. T. Durkin, R. E. Koeppe, O. S. Andersen, J. Mol. Biol. 1990, 211, 221.en_US
dc.identifier.citedreferenceC. J. Stankovic, S. H. Heinemann, S. L. Schreiber, (BBA)‐ Biomembranes 1991, 1061, 163.en_US
dc.identifier.citedreferenceA. Chattopadhyay, S. S. Rawat, D. V. Greathouse, D. A. Kelkar, II Koeppe, E. Roger, Biophys. J. 2008, 95, 166.en_US
dc.identifier.citedreferenceS. Mukherjee, A. Chattopadhyay, Biochemistry 1994, 33, 5089.en_US
dc.identifier.citedreferenceW. Hu, T. A. Cross, Biochemistry 1995, 34, 14147.en_US
dc.identifier.citedreferenceF. M. Raymo, S. Giordani, J. Am. Chem. Soc. 2001, 123, 4651.en_US
dc.identifier.citedreferenceJ. T. C. Wojtyk, A. Wasey, N.‐N. Xiao, P. M. Kazmaier, S. Hoz, C. Yu, R. P. Lemieux, E. Buncel, J. Phys. Chem. A 2007, 111, 2511.en_US
dc.identifier.citedreferenceJ. C. Crano, R. J. Guglielmetti, Physicochemical Studies, Biological Applications, and Thermochromism, Organic Photochromic and Thermochromic Compounds, Vol.2, Plenum Publishing Corporation, New York 1999.en_US
dc.identifier.citedreferenceFigure S5 in the Supporting Information includes data for the difference in conductance between neutral gA‐SP ( 4 ) and cationic gA‐MC ( 5 ) as a function of pH and as a function of ionic strength. Based on our empirical observations, we selected pH of 5.5 to highlight the possibility to dynamically switch the conductance and lifetime of the photosensitive gA derivative.en_US
dc.identifier.citedreferenceM. X. Macrae, S. Blake, X. Jiang, R. Capone, D. J. Estes, M. Mayer, J. Yang, ACS Nano 2009, 3, 3567.en_US
dc.identifier.citedreferenceD. R. Cox, P. A. Lewis, The Statistical Analysis of Series of Events, John Wiley and Sons, Inc., New York, 1966.en_US
dc.identifier.citedreferenceJ. A. Lundbæk, S. A. Collingwood, H. I. Ingólfsson, R. Kapoor, O. S. Andersen, Proc. R. Soc. Interface. 2009, 44, 373.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.