Synapses on demand require dendrites at the ready: How defining stages of dendritic development in vitro could inform studies of behaviorally driven information storage in the brain
dc.contributor.author | Juraska, Janice | en_US |
dc.date.accessioned | 2011-11-10T15:33:17Z | |
dc.date.available | 2012-09-04T15:27:32Z | en_US |
dc.date.issued | 2011-07 | en_US |
dc.identifier.citation | Juraska, Janice (2011). "Synapses on demand require dendrites at the ready: How defining stages of dendritic development in vitro could inform studies of behaviorally driven information storage in the brain." Developmental Psychobiology 53(5): 443-455. <http://hdl.handle.net/2027.42/86892> | en_US |
dc.identifier.issn | 0012-1630 | en_US |
dc.identifier.issn | 1098-2302 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/86892 | |
dc.description.abstract | Bill Greenough's work provides a framework for thinking about synaptogenesis not only as a key step in the initial wiring of neural systems according to a species typical plan (i.e., experience‐expectant development), but also as a mechanism for storing information based an individual's unique experience over its lifetime (i.e., experience‐dependent plasticity). Analysis of synaptic development in vitro brings a new opportunity to test the limits of expectant‐expectant development at the level of the individual neuron. We analyzed dendritic growth, synapse formation, and the development of specialized cytoplasmic microdomains during development in cultured hippocampal neurons, to determine if the timing of each of these events is correlated. Taken together, the findings reported here support the hypotheses that (1) dendritic development is rate limiting in synapse formation and (2) synaptic circuits are assembled in a step‐wise fashion consistent with a stage‐specific shift from genomically pre‐programmed to activity‐dependent mechanisms. © 2011 Wiley Periodicals, Inc. Dev Psychobiol 53:443–455, 2011. | en_US |
dc.publisher | Wiley Subscription Services, Inc., A Wiley Company | en_US |
dc.subject.other | Dendrite | en_US |
dc.subject.other | Dendritic Development | en_US |
dc.subject.other | Synapse Formation | en_US |
dc.subject.other | Postsynaptic Development | en_US |
dc.subject.other | Cultured Hippocampal Neuron | en_US |
dc.subject.other | Experience‐Expectant Brain Development | en_US |
dc.title | Synapses on demand require dendrites at the ready: How defining stages of dendritic development in vitro could inform studies of behaviorally driven information storage in the brain | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Ecology and Evolutionary Biology | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | University of Michigan Neuroscience Graduate Program, Ann Arbor, MI 48109. | en_US |
dc.contributor.affiliationother | Department of Biology, Whitman College, Walla Walla, WA 99362 | en_US |
dc.contributor.affiliationother | Purdue University Ecological Science and Engineering Graduate Program, West Lafayette, IN 47907. | en_US |
dc.contributor.affiliationother | Department of Biology, Whitman College, Walla Walla, WA 99362. | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/86892/1/20560_ftp.pdf | |
dc.identifier.doi | 10.1002/dev.20560 | en_US |
dc.identifier.source | Developmental Psychobiology | en_US |
dc.identifier.citedreference | Araque, A., Parpura, V., Sanzgiri, R. P., & Haydon, P. G. ( 1999 ). Tripartite synapses: Glia, the unacknowledged partner. Trends in Neuroscience, 22, 208 – 215. | en_US |
dc.identifier.citedreference | Arikkath, J. ( 2009 ). Regulation of dendrite and spine morphogenesis and plasticity by catenins. Molecular Neurobiology, 40 ( 1 ), 46 – 54. | en_US |
dc.identifier.citedreference | Banker, G. A., & Goslin, K. ( 1998 ). Culturing nerve cells ( 2nd ed. ). Cambridge, MA: MIT Press. | en_US |
dc.identifier.citedreference | Banker, G. A., & Waxman, A. B. ( 1988 ). Hippocampal neurons generate natural shapes in cell culture. In R. J. Lasek & M. M. Black (Eds.), Intrinsic determinants of neuronal form and function (pp. 61 – 82 ). New York: Alan R. Liss, Inc. | en_US |
dc.identifier.citedreference | Barker, A. J., Koch, S. M., Reed, J., Barres, B. A., & Ullian, E. M. ( 2008 ). Developmental control of synaptic receptivity. Journal of Neuroscience, 28, 8150 – 8160. | en_US |
dc.identifier.citedreference | Barnes, A. P., & Polleux, F. ( 2009 ). Establishment of axon‐dendrite polarity in developing neurons. Annual Review of Neuroscience, 32, 347 – 381. | en_US |
dc.identifier.citedreference | Bartlett, W. P., & Banker, G. A. ( 1984 ). An electron microscopic study of the development of axons and dendrites of hippocampal neurons in culture. II. Synaptic relationships. Journal of Neuroscience, 4 ( 8 ), 1954 – 1965. | en_US |
dc.identifier.citedreference | Beckel‐Mitchener, A., & Greenough, W. T. ( 2004 ). Correlates across the structural, functional, and molecular phenotypes of fragile X syndrome. Mental Retardation and Developmental Disabilities Research Reviews, 10 ( 1 ), 53 – 59. | en_US |
dc.identifier.citedreference | Benavides‐Piccione, R., Ballesteros‐Yanez, I., de Lagran, M. M., Elston, G., Estivill, X., Fillat, C., et al.( 2004 ). On dendrites in Down syndrome and DS murine models: A spiny way to learn. Progress in Neurobiology, 74 ( 2 ), 111 – 126. | en_US |
dc.identifier.citedreference | Bourne, J. N., & Harris, K. M. ( 2008 ). Balancing structure and function at hippocampal dendritic spines. Annual Review of Neuroscience, 31, 47 – 67. | en_US |
dc.identifier.citedreference | Black, J., Sirevaag, A., & Greenough, W. ( 1987 ). Complex experience promotes capillary formation in young rat visual cortex. Neuroscience Letters, 83, 351 – 355. | en_US |
dc.identifier.citedreference | Brittis, P. A., Lemmon, V., Rutishauser, U., & Silver, J. ( 1995 ). Unique changes of ganglion cell growth cone behavior following cell adhesion molecule perturbations: A time‐lapse study of the living retina. Molecular and Cellular Neuroscience, 6 ( 5 ), 433 – 449. | en_US |
dc.identifier.citedreference | Brittis, P. A., & Silver, J. ( 1995 ). Multiple factors govern intraretinal axon guidance: A time lapse study. Molecular and Cellular Neuroscience, 6, 413 – 432. | en_US |
dc.identifier.citedreference | Bushong, E. A., Martone, M. E., & Ellisman, M. H. ( 2004 ). Maturation of astroctye morphology and the establishment of astrocyte domains during postnatal hippocampal development. International Journal of Developmental Neuroscience, 22, 73 – 86. | en_US |
dc.identifier.citedreference | Christie, S. B., & DeBlas, A. L. ( 2003 ). GABAergic and glutamatergic axons innervate the axon initial segment and organize GABA(A) receptor clusters of cultured hippocampal pyramidal cells. Journal of Comparative Neurology, 456 ( 4 ), 361 – 374. | en_US |
dc.identifier.citedreference | Christopherson, K. S., Ullian, E. M., Stokes, C. C., Mullowney, C. E., Hell, J. W., Agah, A., et al.( 2005 ). Thrombospondins are astrocyte‐secreted proteins that promote CNS synaptogenesis. Cell, 120 ( 3 ), 421 – 433. | en_US |
dc.identifier.citedreference | Comery, T. A., Harris, J. B., Willems, P. J., Oostra, B. A., Irwin, S. A., Weiler, I. J., et al.( 1997 ). Abnormal dendritic spines in fragile X knockout mice: Maturation and pruning deficits. Proceedings of the National Academy of Sciences of the United States of America, 94, 5401 – 5405. | en_US |
dc.identifier.citedreference | Craig, A., Blackstone, C., Huganir, R., & Banker, G. ( 1994 ). Selective clustering of glutamate and gamma‐aminobutyric acid receptors opposite terminals releasing the corresponding neurotransmitters. Proceedings of the National Academy of Sciences of the United States of America, 92, 12373 – 12377. | en_US |
dc.identifier.citedreference | Craig, A., Graf, E., & Linhoff, M. ( 2006 ). How to build a central synapse: Clues from cell culture. Trends in Neuroscience, 29 ( 1 ), 8 – 20. | en_US |
dc.identifier.citedreference | Craig, A. M., & Banker, G. ( 1994 ). Neuronal polarity. Annual Review Neuroscience, 17, 267 – 310. | en_US |
dc.identifier.citedreference | Deitch, J. S., & Banker, G. A. ( 1993 ). An electron microscopic analysis of hippocampal neurons developing in culture: Early stages in the emergence of polarity. Journal of Neuroscience, 13 ( 10 ), 82 – 90. | en_US |
dc.identifier.citedreference | Dierssen, M., & Ramakers, G. J. A. ( 2006 ). Dendritic pathology in mental retardation: From molecular genetics to neurobiology. Genes Brain and Behavior, 5, 48 – 60. | en_US |
dc.identifier.citedreference | Dotti, C. G., Sullivan, C. A., & Banker, G. A. ( 1988 ). The establishment of polarity by hippocampal neurons in culture. Journal of Neuroscience, 8, 1454 – 1458. | en_US |
dc.identifier.citedreference | Eayrs, J. T., & Goodhead, B. ( 1959 ). Postnatal development of the cerebral cortex in the rat. Journal of Anatomy, 93, 385 – 402. | en_US |
dc.identifier.citedreference | Elmariah, S., Oh, E., Hughes, E., & Balice‐Gordon, R. ( 2005 ). Astrocytes regulate inhibitory synapse formation via Trk‐mediated modulation of postsynaptic GABA(A) receptors. Journal of Neuroscience, 25 ( 14 ), 3638 – 3650. | en_US |
dc.identifier.citedreference | Eroglu, C., & Barres, B. A. ( 2010 ). Regulation of synaptic connectivity by glia. Nature, 468 ( 7321 ), 223 – 231. | en_US |
dc.identifier.citedreference | Esch, T., Lemmon, V., & Banker, G. ( 1999 ). Local presentation of substrate molecules directs axon specification by cultured hippocampal neurons. Journal of Neuroscience, 19 ( 15 ), 6417 – 6426. | en_US |
dc.identifier.citedreference | Fiala, J. C., Feinberg, M., Popov, V., & Harris, K. M. ( 1998 ). Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. Journal of Neuroscience, 18, 8900 – 8911. | en_US |
dc.identifier.citedreference | Fletcher, T., Cameron, P., De Camilli, P., & Banker, G. ( 1991 ). The distribution of synapsin I and synaptophysin in hippocampal neurons developing in culture. Journal of Neuroscience, 11, 1617 – 1626. | en_US |
dc.identifier.citedreference | Fletcher, T., DeCamilli, P., & Banker, G. ( 1994 ). Synaptogenesis in hippocampal cultures: Evidence indicating the axons and dendrites become competent to form synapses at different stages of neuronal development. Journal of Neuroscience, 14 ( 11 ), 6695 – 6706. | en_US |
dc.identifier.citedreference | Greenough, W., Black, J., & Wallace, C. ( 1987 ). Experience and brain development. Child Development, 58 ( 3 ), 539 – 559. | en_US |
dc.identifier.citedreference | Greenough, W. T., Hwang, H. M., & Gorman, C. ( 1985 ). Evidence for active synapse formation or altered postsynaptic metabolism in visual cortex of rats reared in complex environments. Proceedings of the National Academy of Sciences of the United States of America, 82, 4549 – 4552. | en_US |
dc.identifier.citedreference | Greenough, W., Withers, G. S., & Wallace, C. S. ( 1990 ). Morphological changes in the nervous system arising from behavioral experience: What is the evidence that they are involved in learning and memory? In L. R. Squire & E. Lindenlaub (Eds.), The biology of memory, symposia medica hoescht (Vol. 23, pp. 158 – 192 ) Stuttgart‐New York: F.K. Schattauder Verlag. | en_US |
dc.identifier.citedreference | Hirokawa, N. ( 2006 ). mRNA transport in dendrites: RNAgranules, motors, and tracks. Journal of Neuroscience, 26, 7139 – 7142. | en_US |
dc.identifier.citedreference | Hirokawa, N., & Takemura, R. ( 2005 ). Molecular motors and mechanisms of directional transport in neurons. Nature Reviews Neuroscience, 6 ( 3 ), 201 – 214. | en_US |
dc.identifier.citedreference | Holmaat, A., & Svoboda, K. ( 2009 ). Experience‐dependent structural synaptic plasticity in the mammalian brain. Nature Reviews Neuroscience, 10, 647 – 659. | en_US |
dc.identifier.citedreference | Huttenlocher, P. R. ( 1990 ). Morphometric study of human cerebral cortex development. Neuropsychologia, 28 ( 6 ), 517 – 527. | en_US |
dc.identifier.citedreference | Huttenlocher, P. R. ( 1991 ). Dendritic and synaptic pathology in mental‐retardation. Pediatric Neurology, 7 ( 2 ), 79 – 85. | en_US |
dc.identifier.citedreference | Irwin, S. A., Galvez, R., & Greenough, W. ( 2000 ). Dendritic spine structural anomalies in fragile‐X mental retardation syndrome. Cerebral Cortex, 10, 1038 – 1044. | en_US |
dc.identifier.citedreference | Juraska, J. M., & Fifkova, E. ( 1979 ). A Golgi study of the early postnatal development of the visual cortex of the hooded rat. Journal of Comparative Neurology, 183, 247 – 256. | en_US |
dc.identifier.citedreference | Kollins, K. M., Bell, R. L., Butts, M., & Withers, G. S. ( 2009 ). Dendrites differ from axons in patterns of microtubule stability and polymerization during development. Neural Development, 4: 26. | en_US |
dc.identifier.citedreference | Lardi‐Studler, B., & Fritschy, J.‐M. ( 2007 ). Matching of pre‐and postsynaptic specializations during synaptogenesis. Neuroscientist, 13 ( 2 ), 115 – 126. | en_US |
dc.identifier.citedreference | Li, Z., Okamoto, K.‐I., Hayashi, Y., & Sheng, M. ( 2004 ). The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell, 119, 873 – 887. | en_US |
dc.identifier.citedreference | Peng, Y. R., He, S., Marie, H., Zeng, S. Y., Ma, J., Tan, Z. J., et al.( 2009 ). Coordinated changes in dendritic arborization and synaptic strength during neural circuit development. Neuron, 61, 71 – 84. | en_US |
dc.identifier.citedreference | Polleux, F., Morrow, T., & Ghosh, A. ( 2000 ). Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature, 404, 567 – 573. | en_US |
dc.identifier.citedreference | Purpura, D. P. ( 1975 ). Dendritic differentiation in human cerebral cortex: Normal and aberrant developmental patterns. Advances in Neurology, 12, 91 – 134. | en_US |
dc.identifier.citedreference | Rodier, P. M. ( 1994 ). Vulnerable periods and processes during central nervous system development. Environmental Health Perspectives, 102, 121 – 124. | en_US |
dc.identifier.citedreference | Rose, J., Jin, S. X., & Craig, A. ( 2009 ). Heterosynaptic molecular dynamics: Locally induced propagating synaptic accumulation of CaM kinase II. Neuron, 12 ( 61 ), 351 – 358. | en_US |
dc.identifier.citedreference | Sanchez, A. L., Matthews, B. J., Meynard, M. M., Hu, B., Javed, S., & Cohen‐Cory, S. ( 2006 ). BDNF increases synapse density in dendritres of developing tectal neurons in vivo. Development, 133, 2477 – 2486. | en_US |
dc.identifier.citedreference | Schuman, E. M., Dynes, J. L., & Steward, O. ( 2006 ). Synaptic regulation of translation of dendritic mRNAs. Journal of Neuroscience, 26, 7143 – 7146. | en_US |
dc.identifier.citedreference | Sebeo, J., Hsiao, K., Bozdagi, O., Dumitriu, D., Ge, Y., Zhou, Q., et al.( 2009 ). Requirement for protein synthesis at developing synapses. Journal of Neuroscience, 29 ( 31 ), 9778 – 9793. | en_US |
dc.identifier.citedreference | Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., Greenstein, D., Clasen, L., Evans, A., Rapoport, J. L., Giedd, J. N., & Wise, S. P. ( 2008 ). Neurodevelopmental trajectories of the human cerebral cortex. Journal of Neuroscience, 28 ( 14 ), 3586 – 3594. | en_US |
dc.identifier.citedreference | Shi, P., Shen, K., & Kam, L. C. ( 2007 ). Local presentation of L1 and N‐cadherin in multicomponent, microscale patterns differentially direct neuron function in vitro. Journal of Neurobiology, 67 ( 13 ), 1765 – 1776. | en_US |
dc.identifier.citedreference | Sholl, D. A. ( 1956 ). Organization of the cerebral cortex. London: Methuen Press. | en_US |
dc.identifier.citedreference | Sirevaag, A., Black, J., Shafron, D., & Greenough, W. ( 1988 ). Direct evidence that complex experience increases capillary branching and surface area in visual cortex of young rats. Brain Research, 471, 299 – 304. | en_US |
dc.identifier.citedreference | Stevens, B. ( 2008 ). Neuron‐astrocyte signaling in the development and plasticity of neural circuits. Neurosignals, 16 ( 4 ), 278 – 288. | en_US |
dc.identifier.citedreference | Steward, O. ( 1983a ). Alterations in polyribosomes associated with dendritic spines during the reinnervation of the dentate gyrus of the adult rat. Journal of Neuroscience, 3, 177 – 188. | en_US |
dc.identifier.citedreference | Steward, O. ( 1983b ). Polyribosomes at the base of dendritic spines of central nervous system neurons—Their possible role in synapse construction and modification. Cold Spring Harbor Symposium on Quantitative Biology, 48, 745 – 759. | en_US |
dc.identifier.citedreference | Svitkina, T., Lin, W. H., Webb, D. J., Yasuda, R., Wayman, G. A., Van Aelst, L., & Soderling, S. H. ( 2010 ). Regulation of the postsynaptic cytoskeleton: Roles in development, plasticity, and disorders. Journal of Neuroscience, 30 ( 45 ), 14937 – 14942. | en_US |
dc.identifier.citedreference | Swanwick, C. C., Murthy, N. R., Mtchedlishvili, Z., Sieghart, W., & Kapur, J. ( 2006 ). Development of gamma‐aminobutyric acidergic synapses in cultured hippocampal neurons. Journal of Comparative Neurology, 495 ( 5 ), 497 – 510. | en_US |
dc.identifier.citedreference | Turner, A., & Greenough, W. ( 1985 ). Differential rearing effects on rat visual cortex synapses. I. Synaptic and neuronal density and synapses per neuron. Brain Research, 329, 195 – 203. | en_US |
dc.identifier.citedreference | Volkmar, F. R., & Greenough, W. ( 1972 ). Rearing complexity affects branching of dendrites in the visual cortex of the rat. Science, 176, 1445 – 1447. | en_US |
dc.identifier.citedreference | Wallace, C. S., Reitzenstein, J., & Withers, G. S. ( 2003 ). Diminished experidencedependent neuroanatomical plasiticy: Evidence for an improved biomarker of subtle neurotoxic damage to the developing rat brain. Environmental Health Perspectives, 111, 1294 – 1298. | en_US |
dc.identifier.citedreference | Watson, R. E., DeSesso, J. M., Hurt, M. E., & Cappon, G. D. ( 2006 ). Postnatal growth and morphological development of the brain: A species comparison. Birth Defects Research (B), 77, 471 – 484. | en_US |
dc.identifier.citedreference | Weiler, I. J., Irwin, S. A., Klintsova, A. Y., Spencer, C. M., Brazelton, A. D., Miyashiro, K., et al.( 1997 ). Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proceedings of the National Academy of Sciences of the United States of America, 94, 5395 – 5400. | en_US |
dc.identifier.citedreference | Weiler, I. J., Spangler, C. C., Klintsova, A. Y., Grossman, A. W., Kim, S. H., Bertaina‐Anglade, V., et al.( 2004 ). Fragile X mental retardation protein is necessary for neurotransmitter‐activated protein translation at synapses. Proceedings of the National Academy of Sciences of the United States of America, 101, 17504 – 17509. | en_US |
dc.identifier.citedreference | Withers, G. S., & Banker, G. ( 1998 ). Characterizing and studying neuronal cultures. In G. Banker & K. Goslin (Eds.), Culturing nerve cells ( 2nd ed., pp. 113 – 151 ). Cambridge: MIT Press. | en_US |
dc.identifier.citedreference | Withers, G. S., Higgins, D., Charette, M., & Banker, G. ( 2000 ). Bone morphogenetic protein‐7 enhances dendritic growth and receptivity to innervation in cultured hippocampal neurons. European Journal of Neuroscience, 12 ( 1 ), 106 – 116. | en_US |
dc.identifier.citedreference | Withers, G. S., James, C. D., Kingman, C. E., Craighead, H. G., & Banker, G. A. ( 2006 ). Effects of substrate geometry on growth cone behavior and axon branching. Journal of Neurobiology, 66, 1183 – 1194. | en_US |
dc.identifier.citedreference | Withers, G. S., Lambruschi, L., Brown, L., & Wallace, C. S. ( 2008 ). The absence of glia leads to increased dendritic growth in cultured hippocampal neurons. Society for Neuroscience Annual Meeting Abstracts, 524, 517. | en_US |
dc.identifier.citedreference | Zhang, W., & Benson, D. L. ( 2002 ). Developmentally regulated changes in cellular compartmentation and synaptic distribution of actin in hippocampal neurons. Journal of Neuroscience Research, 69 ( 4 ), 427 – 436. | en_US |
dc.identifier.citedreference | Ziv, N. E., & Smith, S. J. ( 1996 ). Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron, 17 ( 1 ), 91 – 102. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.