Show simple item record

Hypoxia‐inducible transcription factor 2α promotes steatohepatitis through augmenting lipid accumulation, inflammation, and fibrosis

dc.contributor.authorQu, Aijuanen_US
dc.contributor.authorTaylor, Matthewen_US
dc.contributor.authorXue, Xiangen_US
dc.contributor.authorMatsubara, Tsutomuen_US
dc.contributor.authorMetzger, Danielen_US
dc.contributor.authorChambon, Pierreen_US
dc.contributor.authorGonzalez, Frank J.en_US
dc.contributor.authorShah, Yatrik M.en_US
dc.date.accessioned2011-11-10T15:33:35Z
dc.date.available2012-10-01T18:34:26Zen_US
dc.date.issued2011-08en_US
dc.identifier.citationQu, Aijuan; Taylor, Matthew; Xue, Xiang; Matsubara, Tsutomu; Metzger, Daniel; Chambon, Pierre; Gonzalez, Frank J.; Shah, Yatrik M. (2011). "Hypoxia‐inducible transcription factor 2α promotes steatohepatitis through augmenting lipid accumulation, inflammation, and fibrosis ." Hepatology 54(2): 472-483. <http://hdl.handle.net/2027.42/86905>en_US
dc.identifier.issn0270-9139en_US
dc.identifier.issn1527-3350en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/86905
dc.description.abstractOxygen dynamics in the liver is a central signaling mediator controlling hepatic homeostasis, and dysregulation of cellular oxygen is associated with liver injury. Moreover, the transcription factor relaying changes in cellular oxygen levels, hypoxia‐inducible factor (HIF), is critical in liver metabolism, and sustained increase in HIF signaling can lead to spontaneous steatosis, inflammation, and liver tumorigenesis. However, the direct responses and genetic networks regulated by HIFs in the liver are unclear. To help define the HIF signal‐transduction pathway, an animal model of HIF overexpression was generated and characterized. In this model, overexpression was achieved by Von Hippel‐Lindau ( Vhl ) disruption in a liver‐specific temporal fashion. Acute disruption of Vhl induced hepatic lipid accumulation in an HIF‐2α–dependent manner. In addition, HIF‐2α activation rapidly increased liver inflammation and fibrosis, demonstrating that steatosis and inflammation are primary responses of the liver to hypoxia. To identify downstream effectors, a global microarray expression analysis was performed using livers lacking Vhl for 24 hours and 2 weeks, revealing a time‐dependent effect of HIF on gene expression. Increase in genes involved in fatty acid synthesis were followed by an increase in fatty acid uptake‐associated genes, and an inhibition of fatty acid β‐oxidation. A rapid increase in proinflammatory cytokines and fibrogenic gene expression was also observed. In vivo chromatin immunoprecipitation assays revealed novel direct targets of HIF signaling that may contribute to hypoxia‐mediated steatosis and inflammation. Conclusion: These data suggest that HIF‐2α is a critical mediator in the progression from clinically manageable steatosis to more severe steatohepatitis and liver cancer, and may be a potential therapeutic target. (H EPATOLOGY 2011;)en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.titleHypoxia‐inducible transcription factor 2α promotes steatohepatitis through augmenting lipid accumulation, inflammation, and fibrosisen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationumDepartment of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationumDepartment of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, University of Michigan, 1301 East Catherine Street, Ann Arbor, MI 48109en_US
dc.contributor.affiliationotherLaboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MDen_US
dc.contributor.affiliationotherDepartment of Physiological Genetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, Franceen_US
dc.identifier.pmid21538443en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86905/1/24400_ftp.pdf
dc.identifier.doi10.1002/hep.24400en_US
dc.identifier.sourceHepatologyen_US
dc.identifier.citedreferenceJungermann K. Metabolic zonation of liver parenchyma. Semin Liver Dis 1988; 8: 329 ‐ 341.en_US
dc.identifier.citedreferenceJungermann K, Kietzmann T. Oxygen: modulator of metabolic zonation and disease of the liver. HEPATOLOGY 2000; 31: 255 ‐ 260.en_US
dc.identifier.citedreferenceIvan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, et al. HIFalpha targeted for VHL‐mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001; 292: 464 ‐ 468.en_US
dc.identifier.citedreferenceJaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al. Targeting of HIF‐alpha to the von Hippel‐Lindau ubiquitylation complex by O2‐regulated prolyl hydroxylation. Science 2001; 292: 468 ‐ 472.en_US
dc.identifier.citedreferenceSemenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 1992; 12: 5447 ‐ 5454.en_US
dc.identifier.citedreferenceTian H, McKnight SL, Russell DW. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 1997; 11: 72 ‐ 82.en_US
dc.identifier.citedreferenceWang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia‐inducible factor 1 is a basic‐helix‐loop‐helix‐PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 1995; 92: 5510 ‐ 5514.en_US
dc.identifier.citedreferenceWang GL, Semenza GL. Characterization of hypoxia‐inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem 1993; 268: 21513 ‐ 21518.en_US
dc.identifier.citedreferenceHaase VH, Glickman JN, Socolovsky M, Jaenisch R. Vascular tumors in livers with targeted inactivation of the von Hippel‐Lindau tumor suppressor. Proc Natl Acad Sci U S A 2001; 98: 1583 ‐ 1588.en_US
dc.identifier.citedreferencePark SK, Haase VH, Johnson RS. von Hippel Lindau tumor suppressor regulates hepatic glucose metabolism by controlling expression of glucose transporter 2 and glucose 6‐phosphatase. Int J Oncol 2007; 30: 341 ‐ 348.en_US
dc.identifier.citedreferencePeyssonnaux C, Zinkernagel AS, Schuepbach RA, Rankin E, Vaulont S, Haase VH, et al. Regulation of iron homeostasis by the hypoxia‐inducible transcription factors (HIFs). J Clin Invest 2007; 117: 1926 ‐ 1932.en_US
dc.identifier.citedreferenceRankin EB, Biju MP, Liu Q, Unger TL, Rha J, Johnson RS, et al. Hypoxia‐inducible factor‐2 (HIF‐2) regulates hepatic erythropoietin in vivo. J Clin Invest 2007; 117: 1068 ‐ 1077.en_US
dc.identifier.citedreferenceRankin EB, Rha J, Unger TL, Wu CH, Shutt HP, Johnson RS, et al. Hypoxia‐inducible factor‐2 regulates vascular tumorigenesis in mice. Oncogene 2008; 27: 5354 ‐ 5358.en_US
dc.identifier.citedreferenceRankin EB, Rha J, Selak MA, Unger TL, Keith B, Liu Q, et al. Hypoxia‐inducible factor 2 regulates hepatic lipid metabolism. Mol Cell Biol 2009; 29: 4527 ‐ 4538.en_US
dc.identifier.citedreferenceMatsusue K, Miyoshi A, Yamano S, Gonzalez FJ. Ligand‐activated PPARbeta efficiently represses the induction of LXR‐dependent promoter activity through competition with RXR. Mol Cell Endocrinol 2006; 256: 23 ‐ 33.en_US
dc.identifier.citedreferenceTaylor M, Qu A, Anderson ER, Matsubara T, Martin A, Gonzalez FJ, et al. Hypoxia‐inducible factor‐2alpha mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice. Gastroenterology 2011; doi:10.1053/j.gastro.2011.03.007.en_US
dc.identifier.citedreferenceSchuler M, Dierich A, Chambon P, Metzger D. Efficient temporally controlled targeted somatic mutagenesis in hepatocytes of the mouse. Genesis 2004; 39: 167 ‐ 172.en_US
dc.identifier.citedreferenceRomeo S, Yin W, Kozlitina J, Pennacchio LA, Boerwinkle E, Hobbs HH, et al. Rare loss‐of‐function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. J Clin Invest 2009; 119: 70 ‐ 79.en_US
dc.identifier.citedreferenceConklin D, Gilbertson D, Taft DW, Maurer MF, Whitmore TE, Smith DL, et al. Identification of a mammalian angiopoietin‐related protein expressed specifically in liver. Genomics 1999; 62: 477 ‐ 482.en_US
dc.identifier.citedreferenceKoishi R, Ando Y, Ono M, Shimamura M, Yasumo H, Fujiwara T, et al. Angptl3 regulates lipid metabolism in mice. Nat Genet 2002; 30: 151 ‐ 157.en_US
dc.identifier.citedreferenceHiggins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B, et al. Hypoxia promotes fibrogenesis in vivo via HIF‐1 stimulation of epithelial‐to‐mesenchymal transition. J Clin Invest 2007; 117: 3810 ‐ 3820.en_US
dc.identifier.citedreferenceKagan HM. Lysyl oxidase: mechanism, regulation and relationship to liver fibrosis. Pathol Res Pract 1994; 190: 910 ‐ 919.en_US
dc.identifier.citedreferenceMyllyharju J. Prolyl 4‐hydroxylases, the key enzymes of collagen biosynthesis. Matrix Biol 2003; 22: 15 ‐ 24.en_US
dc.identifier.citedreferenceStrnad P, Omary MB. Transglutaminase cross‐links Sp1‐mediated transcription to ethanol‐induced liver injury. Gastroenterology 2009; 136: 1502 ‐ 1505.en_US
dc.identifier.citedreferenceTatsukawa H, Fukaya Y, Frampton G, Martinez‐Fuentes A, Suzuki K, Kuo TF, et al. Role of transglutaminase 2 in liver injury via cross‐linking and silencing of transcription factor Sp1. Gastroenterology 2009; 136: 1783.e10 ‐ 1795.e10.en_US
dc.identifier.citedreferencevan der Slot AJ, Zuurmond AM, Bardoel AF, Wijmenga C, Pruijs HE, Sillence DO, et al. Identification of PLOD2 as telopeptide lysyl hydroxylase, an important enzyme in fibrosis. J Biol Chem 2003; 278: 40967 ‐ 40972.en_US
dc.identifier.citedreferenceLieber CS, DeCarli LM. Animal models of chronic ethanol toxicity. Meth Enzymol 1994; 233: 585 ‐ 594.en_US
dc.identifier.citedreferenceSomsouk M, Yee HF Jr, Biggins SW. Understanding liver health using the National Center for Health Statistics. Dig Dis Sci 2009; 54: 2325 ‐ 2329.en_US
dc.identifier.citedreferenceDay CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology 1998; 114: 842 ‐ 845.en_US
dc.identifier.citedreferenceShimizugawa T, Ono M, Shimamura M, Yoshida K, Ando Y, Koishi R, et al. ANGPTL3 decreases very low density lipoprotein triglyceride clearance by inhibition of lipoprotein lipase. J Biol Chem 2002; 277: 33742 ‐ 33748.en_US
dc.identifier.citedreferenceShan L, Yu XC, Liu Z, Hu Y, Sturgis LT, Miranda ML, Liu Q. The angiopoietin‐like proteins ANGPTL3 and ANGPTL4 inhibit lipoprotein lipase activity through distinct mechanisms. J Biol Chem 2009; 284: 1419 ‐ 1424.en_US
dc.identifier.citedreferenceLee EC, Desai U, Gololobov G, Hong S, Feng X, Yu XC, et al. Identification of a new functional domain in angiopoietin‐like 3 (ANGPTL3) and angiopoietin‐like 4 (ANGPTL4) involved in binding and inhibition of lipoprotein lipase (LPL). J Biol Chem 2009; 284: 13735 ‐ 13745.en_US
dc.identifier.citedreferenceKucejova B, Sunny NE, Nguyen AD, Hallac R, Fu X, Pena‐Llopis S, et al. Uncoupling hypoxia signaling from oxygen sensing in the liver results in hypoketotic hypoglycemic death. Oncogene 2011; 30: 2147 ‐ 2160.en_US
dc.identifier.citedreferenceImtiyaz HZ, Williams EP, Hickey MM, Patel SA, Durham AC, Yuan LJ, et al. Hypoxia‐inducible factor 2alpha regulates macrophage function in mouse models of acute and tumor inflammation. J Clin Invest 2010; 120: 2699 ‐ 2714.en_US
dc.identifier.citedreferenceCopple BL, Bustamante JJ, Welch TP, Kim ND, Moon JO. Hypoxia‐inducible factor‐dependent production of profibrotic mediators by hypoxic hepatocytes. Liver Int 2009; 29: 1010 ‐ 1021.en_US
dc.identifier.citedreferenceCopple BL, Bai S, Moon JO. Hypoxia‐inducible factor‐dependent production of profibrotic mediators by hypoxic Kupffer cells. Hepatol Res 2010; 40: 530 ‐ 539.en_US
dc.identifier.citedreferenceCopple BL, Bai S, Burgoon LD, Moon JO. Hypoxia‐inducible factor‐1alpha regulates the expression of genes in hypoxic hepatic stellate cells important for collagen deposition and angiogenesis. Liver Int 2011; 31: 230 ‐ 244.en_US
dc.identifier.citedreferenceBrenner DA. Molecular pathogenesis of liver fibrosis. Trans Am Clin Climatol Assoc 2009; 120: 361 ‐ 368.en_US
dc.identifier.citedreferenceJang GY, Jeon JH, Cho SY, Shin DM, Kim CW, Jeong EM, et al. Transglutaminase 2 suppresses apoptosis by modulating caspase 3 and NF‐kappaB activity in hypoxic tumor cells. Oncogene 2010; 29: 356 ‐ 367.en_US
dc.identifier.citedreferencePopov Y, Sverdlov DY, Sharma AK, Bhaskar KR, Li S, Freitag TL, et al. Tissue transglutaminase does not affect fibrotic matrix stability or regression of liver fibrosis in mice. Gastroenterology 2011; 140: 1642 ‐ 1652.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.