Show simple item record

Methods of investigation for cardiac autonomic dysfunction in human research studies

dc.contributor.authorBernardi, Lucianoen_US
dc.contributor.authorSpallone, Vincenzaen_US
dc.contributor.authorStevens, Martin J.en_US
dc.contributor.authorHilsted, Janniken_US
dc.contributor.authorFrontoni, Simonaen_US
dc.contributor.authorPop‐busui, Rodicaen_US
dc.contributor.authorZiegler, Danen_US
dc.contributor.authorKempler, Peteren_US
dc.contributor.authorFreeman, Royen_US
dc.contributor.authorLow, Phillip A.en_US
dc.contributor.authorTesfaye, Solomonen_US
dc.contributor.authorValensi, Paulen_US
dc.date.accessioned2011-11-10T15:33:51Z
dc.date.available2012-12-03T21:17:29Zen_US
dc.date.issued2011-10en_US
dc.identifier.citationBernardi, Luciano; Spallone, Vincenza; Stevens, Martin; Hilsted, Jannik; Frontoni, Simona; Pop‐busui, Rodica ; Ziegler, Dan; Kempler, Peter; Freeman, Roy; Low, Phillip; Tesfaye, Solomon; Valensi, Paul (2011). "Methods of investigation for cardiac autonomic dysfunction in human research studies." Diabetes/Metabolism Research and Reviews 27(7): 654-664. <http://hdl.handle.net/2027.42/86917>en_US
dc.identifier.issn1520-7552en_US
dc.identifier.issn1520-7560en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/86917
dc.description.abstractThis consensus document provides evidence‐based guidelines regarding the evaluation of diabetic cardiovascular autonomic neuropathy (CAN) for human research studies; the guidelines are the result of the work of the CAN Subcommittee of the Toronto Diabetic Neuropathy Expert Group. The subcommittee critically reviewed the limitations and strengths of the available diagnostic approaches for CAN and the need for developing new tests for autonomic function. It was concluded that the most sensitive and specific approaches currently available to evaluate CAN in clinical research are: (1) heart rate variability, (2) baroreflex sensitivity, (3) muscle sympathetic nerve activity, (4) plasma catecholamines, and (5) heart sympathetic imaging. It was also recommended that efforts should be undertaken to develop new non‐invasive and safe CAN tests to be used in clinical research, with higher sensitivity and specificity, for studying the pathophysiology of CAN and evaluating new therapeutic approaches. Copyright © 2011 John Wiley & Sons, Ltd.en_US
dc.publisherJohn Wiley & Sons, Ltd.en_US
dc.subject.otherDiabetic Neuropathyen_US
dc.subject.otherHeart Rate Variabilityen_US
dc.subject.otherBaroreflex Sensitivityen_US
dc.subject.otherMicroneurographyen_US
dc.subject.otherCatecholaminesen_US
dc.subject.otherCardiac Imagingen_US
dc.titleMethods of investigation for cardiac autonomic dysfunction in human research studiesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Internal Medicine, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Internal Medicine, IRCCS S.Matteo and University of Pavia, Pavia, Italyen_US
dc.contributor.affiliationotherDepartment of Internal Medicine, University of Tor Vergata, Rome, Italyen_US
dc.contributor.affiliationotherDepartment of Medicine, University of Birmingham, Birmingham, UKen_US
dc.contributor.affiliationotherCopenhagen University Hospital, Copenhagen, Denmarken_US
dc.contributor.affiliationotherInstitute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germanyen_US
dc.contributor.affiliationotherDepartment of Medicine, Semmelweis University, Budapest, Hungaryen_US
dc.contributor.affiliationotherBeth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USAen_US
dc.contributor.affiliationotherDepartment of Neurology, Mayo Clinic, Rochester, MN, USAen_US
dc.contributor.affiliationotherDiabetes Research Unit, Sheffield Teaching Hospitals, Sheffield, UKen_US
dc.contributor.affiliationotherService d'Endocrinologie‐Diabétologie‐Nutrition, Hôpital Jean Verdier, AP‐HP, Université Paris Nord, CRNH‐IdF, Bondy, Franceen_US
dc.contributor.affiliationotherDepartment of Internal Medicine, IRCCS S. Matteo and University of Pavia, Pavia, Italy.en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86917/1/1224_ftp.pdf
dc.identifier.doi10.1002/dmrr.1224en_US
dc.identifier.sourceDiabetes/Metabolism Research and Reviewsen_US
dc.identifier.citedreferenceEngland JD, Gronseth GS, Franklin G, et al.; American Academy of Neurology. Practice parameter: evaluation of distal symmetric polyneuropathy: role of autonomic testing, nerve biopsy, and skin biopsy (an evidence‐based review). Report of the American Academy of Neurology, American Association of Neuromuscular and Electrodiagnostic Medicine, and American Academy of Physical Medicine and Rehabilitation. Neurology 2009; 72: 177 – 184.en_US
dc.identifier.citedreferenceMalliani A, Pagani M, Montano N, Mela GS. Sympathovagal balance: a reappraisal. Circulation 1998; 98 ( 23 ): 2640 – 2643.en_US
dc.identifier.citedreferencePomeranz B, Macaulay RJ, Caudill MA, et al. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol 1985; 248: H151 – H153.en_US
dc.identifier.citedreferencede Boer RW, Karemaker JM, Strackee J. Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat‐to‐beat model. Am J Physiol 1987; 253: H680 – H689.en_US
dc.identifier.citedreferenceSleight P, La Rovere MT, Mortara A, et al. Physiology and pathophysiology of heart rate and blood pressure variability in humans: is power spectral analysis largely an index of baroreflex gain? Clin Sci (Lond) 1995; 88 ( 1 ): 103 – 109.en_US
dc.identifier.citedreferenceSpadacini G, Passino C, Leuzzi S, et al. Frequency‐dependent baroreflex control of blood pressure and heart rate during physical exercise. Int J Cardiol 2006; 107 ( 2 ): 171 – 179.en_US
dc.identifier.citedreferenceBernardi L, Hayoz D, Wenzel R, et al. Synchronous and baroceptor‐sensitive oscillations in skin microcirculation: evidence for central autonomic control. Am J Physiol 1997; 273: H1867 – H1878.en_US
dc.identifier.citedreferenceSaul JP, Berger RD, Albrecht P, Stein SP, Chen MH, Cohen RJ. Transfer function analysis of the circulation: unique insights into cardiovascular regulation. Am J Physiol 1991; 261: H1231 – H1245.en_US
dc.identifier.citedreferenceMontano N, Ruscone TG, Porta A, Lombardi F, Pagani M, Malliani A. Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation 1994; 90 ( 4 ): 1826 – 1831.en_US
dc.identifier.citedreferencePagani M, Malliani A. Interpreting oscillations of muscle sympathetic nerve activity and heart rate variability. J Hypertens 2000; 18 ( 12 ): 1709 – 1719.en_US
dc.identifier.citedreferenceDeBeck LD, Petersen SR, Jones KE, Stickland MK. Heart rate variability and muscle sympathetic nerve activity response to acute stress: the effect of breathing. Am J Physiol Regul Integr Comp Physiol 2010; 299 ( 1 ): R80 – R91.en_US
dc.identifier.citedreferenceBernardi L, Bianchini B, Spadacini G, et al. Demonstrable cardiac reinnervation after human heart transplantation by carotid baroreflex modulation of RR interval. Circulation 1995; 92 ( 10 ): 2895 – 2903.en_US
dc.identifier.citedreferenceBernardi L, Salvucci F, Suardi R, et al. Evidence for an intrinsic mechanism regulating heart rate variability in the transplanted and the intact heart during submaximal dynamic exercise? Cardiovasc Res 1990; 24 ( 12 ): 969 – 981.en_US
dc.identifier.citedreferenceBernardi L, Valle F, Coco M, Calciati A, Sleight P. Physical activity influences heart rate variability and very‐low‐frequency components in Holter electrocardiograms. Cardiovasc Res 1996; 32 ( 2 ): 234 – 237.en_US
dc.identifier.citedreferenceHeart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996; 93 ( 5 ): 1043 – 1065.en_US
dc.identifier.citedreferencePagani M, Malfatto G, Pierini S, et al. Spectral analysis of heart rate variability in the assessment of autonomic diabetic neuropathy. J Auton Nerv Syst 1988; 23 ( 2 ): 143 – 153.en_US
dc.identifier.citedreferenceGulli G, Fattor B, Marchesi M. Cross‐spectral analysis of cardiovascular variables in supine diabetic patients. Clin Auton Res 2005; 15 ( 2 ): 92 – 98.en_US
dc.identifier.citedreferenceZoppini G, Cacciatori V, Gemma ML, et al. Effect of moderate aerobic exercise on sympatho‐vagal balance in Type 2 diabetic patients. Diabet Med 2007; 24 ( 4 ): 370 – 376.en_US
dc.identifier.citedreferenceBernardi L, Rossi M, Leuzzi S, et al. Reduction of 0.1 Hz microcirculatory fluctuations as evidence of sympathetic dysfunction in insulin‐dependent diabetes. Cardiovasc Res 1997; 34 ( 1 ): 185 – 191.en_US
dc.identifier.citedreferenceBernardi L. Clinical evaluation of arterial baroreflex activity in diabetes. Diabetes Nutr Metab 2000; 13 ( 6 ): 331 – 340.en_US
dc.identifier.citedreferenceMaser RE, Lenhard MJ. An overview of the effect of weight loss on cardiovascular autonomic function. Curr Diabetes Rev 2007; 3: 204 – 211.en_US
dc.identifier.citedreferenceGrassi G, Cattaneo BM, Seravalle G, Lanfranchi A, Mancia G. Baroreflex control of sympathetic nerve activity in essential and secondary hypertension. Hypertension 1998; 31 ( 1 ): 68 – 72.en_US
dc.identifier.citedreferenceLa Rovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart‐rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet 1998; 351 ( 9101 ): 478 – 484.en_US
dc.identifier.citedreferenceLa Rovere MT, Pinna GD, Maestri R, et al. Prognostic implications of baroreflex sensitivity in heart failure patients in the beta‐blocking era. J Am Coll Cardiol 2009; 53 ( 2 ): 193 – 199.en_US
dc.identifier.citedreferenceJohansson M, Gao SA, Friberg P, et al. Baroreflex effectiveness index and baroreflex sensitivity predict all‐cause mortality and sudden death in hypertensive patients with chronic renal failure. J Hypertens 2007; 25 ( 1 ): 163 – 168.en_US
dc.identifier.citedreferenceGerritsen J, Dekker JM, TenVoorde BJ, et al. Impaired autonomic function is associated with increased mortality, especially in subjects with diabetes, hypertension, or a history of cardiovascular disease: the Hoorn Study. Diabetes Care 2001; 24 ( 10 ): 1793 – 1798.en_US
dc.identifier.citedreferenceFrattola A, Parati G, Gamba P, et al. Time and frequency domain estimates of spontaneous baroreflex sensitivity provide early detection of autonomic dysfunction in diabetes mellitus. Diabetologia 1997; 40 ( 12 ): 1470 – 1475.en_US
dc.identifier.citedreferenceWeston PJ, James MA, Panerai RB, McNally PG, Potter JF, Thurston H. Evidence of defective cardiovascular regulation in insulin‐dependent diabetic patients without clinical autonomic dysfunction. Diabetes Res Clin Pract 1998; 42 ( 3 ): 141 – 148.en_US
dc.identifier.citedreferenceRosengård‐Bärlund M, Bernardi L, Fagerudd J, et al.; FinnDiane Study Group. Early autonomic dysfunction in type 1 diabetes: a reversible disorder? Diabetologia 2009; 52 ( 6 ): 1164 – 1172.en_US
dc.identifier.citedreferenceLoimaala A, Huikuri HV, Kööbi T, Rinne M, Nenonen A, Vuori I. Exercise training improves baroreflex sensitivity in type 2 diabetes. Diabetes 2003; 52 ( 7 ): 1837 – 1842.en_US
dc.identifier.citedreferenceAlvarez GE, Davy BM, Ballard TP, Beske SD, Davy KP. Weight loss increases cardiovagal baroreflex function in obese young and older men. Am J Physiol 2005; 289 ( 4 ): E665 – E669.en_US
dc.identifier.citedreferenceGoso Y, Asanoi H, Ishise H, et al. Respiratory modulation of muscle sympathetic nerve activity in patients with chronic heart failure. Circulation 2001; 104 ( 4 ): 418 – 423.en_US
dc.identifier.citedreferenceMonahan KD. Effect of aging on baroreflex function in humans. Am J Physiol 2007; 293 ( 1 ): R3 – R12.en_US
dc.identifier.citedreferenceHuggett RJ, Scott EM, Gilbey SG, Bannister J, Mackintosh AF, Mary DA. Disparity of autonomic control in type 2 diabetes mellitus. Diabetologia 2005; 48 ( 1 ): 172 – 179.en_US
dc.identifier.citedreferenceHoffman RP, Sinkey CA, Anderson EA. Microneurographically determined muscle sympathetic nerve activity levels are reproducible in insulin‐dependent diabetes mellitus. J Diabetes Complications 1998; 12 ( 6 ): 307 – 310.en_US
dc.identifier.citedreferenceFagius J, Wallin BG. Sympathetic reflex latencies and conduction velocities in patients with polyneuropathy. J Neurol Sci 1980; 47 ( 3 ): 449 – 461.en_US
dc.identifier.citedreferenceCryer PE. Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. N Engl J Med 1980; 303 ( 8 ): 436 – 444.en_US
dc.identifier.citedreferenceGoldstein DS, Holmes C, Sharabi Y, Brentzel S, Eisenhofer G. Plasma levels of catechols and metanephrines in neurogenic orthostatic hypotension. Neurology 2003; 60 ( 8 ): 1327 – 1332.en_US
dc.identifier.citedreferenceHilsted J. Catecholamines and diabetic autonomic neuropathy. Diabet Med 1995; 12 ( 4 ): 296 – 297.en_US
dc.identifier.citedreferenceChristensen NJ, Dejgaard A, Hilsted J. Plasma dihydroxyphenylglycol (DHPG) as an index of diabetic autonomic neuropathy. Clin Physiol 1988; 8 ( 6 ): 577 – 580.en_US
dc.identifier.citedreferenceHilsted J, Parving HH, Christensen NJ, Benn J, Galbo H. Hemodynamics in diabetic orthostatic hypotension. J Clin Invest. 1981; 68 ( 6 ): 1427 – 1434.en_US
dc.identifier.citedreferenceHilsted J, Galbo H, Christensen NJ. Impaired responses of catecholamines, growth hormone, and cortisol to graded exercise in diabetic autonomic neuropathy. Diabetes 1980; 29 ( 4 ): 257 – 262.en_US
dc.identifier.citedreferenceBottini P, Tantucci C, Scionti L, et al. Cardiovascular response to exercise in diabetic patients: influence of autonomic neuropathy of different severity. Diabetologia 1995; 38 ( 2 ): 244 – 250.en_US
dc.identifier.citedreferenceHepburn DA, MacLeod KM, Frier BM. Physiological, symptomatic and hormonal responses to acute hypoglycaemia in type 1 diabetic patients with autonomic neuropathy. Diabet Med 1993; 10 ( 10 ): 940 – 949.en_US
dc.identifier.citedreferenceFanelli C, Pampanelli S, Lalli C, et al. Long‐term intensive therapy of IDDM patients with clinically overt autonomic neuropathy: effects on hypoglycemia awareness and counterregulation. Diabetes 1997; 46 ( 7 ): 1172 – 1181.en_US
dc.identifier.citedreferenceDessein PH, Joffe BI, Metz RM, Millar DL, Lawson M, Stanwix AE. Autonomic dysfunction in systemic sclerosis: sympathetic overactivity and instability. Am J Med 1992; 93 ( 2 ): 143 – 150.en_US
dc.identifier.citedreferenceVaz M, Kumar MV, Kulkarni RN, Rodrigues D, Shetty PS. Variability of cardiovascular and plasma noradrenaline responses to sustained isometric contraction in normal human subjects. Clin Sci (Lond) 1993; 85 ( 1 ): 45 – 49.en_US
dc.identifier.citedreferenceStevens MJ, Raffel DM, Allman K, et al. Cardiac sympathetic dysinnervation in diabetes—an explanation for enhanced cardiovascular risk? Circulation 1998; 98: 961 – 968.en_US
dc.identifier.citedreferenceDeGrado TR, Hutchins GD, Toorongian SA, Wieland DM Schwaiger M. Myocardial kinetics of carbon‐11‐meta‐hydroxyephedrine (HED): retention mechanisms and effects of norepinephrine. J Nucl Med 1993; 34: 1287 – 1293.en_US
dc.identifier.citedreferenceMantysaari M, Kuikka J, Mustonen J, et al. Measurement of myocardial accumulation of 123I‐metaiodobenzylguanidine for studying cardiac autonomic neuropathy in diabetes mellitus. Clin Autonom Res 1996; 6 ( 3 ): 163 – 169.en_US
dc.identifier.citedreferenceAllman KC, Stevens MJ, Wieland DM, et al. Noninvasive assessment of cardiac diabetic neuropathy by C‐11 hydroxyephedrine and positron emission tomography. J Am Coll Cardiol 1993; 22: 1425 – 1432.en_US
dc.identifier.citedreferenceNagamachi S, Jinnouchi S, Kurose T, et al. 123I‐MIBG myocardial scintigraphy in diabetic patients: relationship with 201Tl uptake and cardiac autonomic function Ann Nucl Med 1998; 12 ( 6 ): 323 – 331.en_US
dc.identifier.citedreferenceStevens MJ, Dayanikli F, Allman KC, et al.. Scintigraphic assessment of regionalized defects in myocardial sympathetic innervation and blood flow regulation in diabetic patients with autonomic neuropathy. J Am Coll Cardiol 1998; 31: 1575 – 1584.en_US
dc.identifier.citedreferenceSugiyama T, Kurata C, Tawarahara K, Nakano T. Is abnormal iodine‐123‐MIBG kinetics associated with left ventricular dysfunction in patients with diabetes mellitus? J Nucl Cardiol 2000; 7: 562 – 568.en_US
dc.identifier.citedreferenceGiordano A, Calcagni ML, Verrillo A, et al. Assessment of sympathetic innervation of the heart in diabetes mellitus using 123I‐MIBG. Metab Clin Exp 2000; 13 ( 6 ): 350 – 355.en_US
dc.identifier.citedreferenceFreeman MR, Newman D, Dorian P, Barr A, Langer A. Relation of direct assessment of cardiac autonomic function with metaiodobenzylguanidine imaging to heart rate variability in diabetes mellitus. Am J Cardiol 1987; 80 ( 2 ): 247 – 250.en_US
dc.identifier.citedreferencePop‐Busui R, Kirkwood I, Schmid H, et al. Sympathetic dysfunction in type 1 diabetes: association with impaired myocardial blood flow reserves and diastolic dysfunction. J Am Coll Cardiol 2004; 44: 2368 – 2374.en_US
dc.identifier.citedreferenceStevens MJ, Raffel DM, Allman KC, Schwaiger M, Wieland DM. Regression and progression of cardiac sympathetic dysinnervation in diabetic patients with autonomic neuropathy. Metabolism 1999; 48: 92 – 101.en_US
dc.identifier.citedreferenceSchnell O, Muhr D, Weiss M, Dresel S, Haslbeck M, Standl E. Reduced myocardial 123 I‐metaiodo‐ benzylguanidine uptake in newly diagnosed IDDM patients. Diabetes 1996; 45: 801 – 805.en_US
dc.identifier.citedreferenceZiegler D, Weise F, Langen K‐J, et al. Effect of glycemic control on myocardial sympathetic innervation assessed by [ 123 ]metaiodobenzylguanidine scintigraphy: a 4‐year prospective study in IDDM patients. Diabetologia 1998; 41: 443 – 451.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.