Show simple item record

The Water Uptake of Plasticized Poly(vinyl chloride) Solid‐Contact Calcium‐Selective Electrodes

dc.contributor.authorLindfors , Tomen_US
dc.contributor.authorSundfors, Fredriken_US
dc.contributor.authorHöfler , Lajosen_US
dc.contributor.authorGyurcsányi , Róbert E.en_US
dc.date.accessioned2011-11-10T15:33:55Z
dc.date.available2012-11-02T18:56:40Zen_US
dc.date.issued2011-09en_US
dc.identifier.citationLindfors , Tom ; Sundfors, Fredrik; Höfler , Lajos ; Gyurcsányi , Róbert E. (2011). "The Water Uptake of Plasticized Poly(vinyl chloride) Solidâ Contact Calciumâ Selective Electrodes." Electroanalysis 23(9): 2156-2163. <http://hdl.handle.net/2027.42/86920>en_US
dc.identifier.issn1040-0397en_US
dc.identifier.issn1521-4109en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/86920
dc.description.abstractA hyphenated method based on FTIR‐ATR and electrochemical impedance spectroscopy has been applied to simultaneously measure the water uptake, changes in the bulk resistance and potential of plasticized poly(vinyl chloride) (PVC) based Ca 2+ ‐selective coated‐wire (CaCWE) and solid‐contact electrodes (CaSCISEs). Most of the water uptake of the ion‐selective membranes (ISMs) used in both electrode types took place within the first 9 h in 10 −3  M CaCl 2 showing good correlation with the stabilization of the individual electrode potentials. The bulk resistance of the ISMs of the CaCWEs and the CaSCISEs with poly(3‐octylthiophene) (POT) as the solid‐contact (SC) increased most during the first 18 h in 10 −3  M CaCl 2 . The increase in the resistance was found to be related to the exchange of K + for Ca 2+ in the ISM and the formation of the Ca 2+ ‐ionophore (ETH 5234) complex having a lower diffusivity than the free K + ions. In contrary to previously published results on silicone rubber based SCISEs and poly(methyl methacrylate):poly( n ‐decyl methacrylate) membranes containing POT, the plasticized PVC‐based CaSCISEs with POT as the SC had a higher water uptake than the CaCWEs. The CaSCISEs had a detection limit of 2×10 −8  M Ca 2+ and a good potential reproducibility of 148.9±1.0 mV in 10 −4  M CaCl 2 .en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherSolid‐Contact Ion‐Selective Electrodeen_US
dc.subject.otherPoly(3‐Octylthiophene)en_US
dc.subject.otherPlasticized Poly(Vinyl Chloride)en_US
dc.subject.otherWater Uptakeen_US
dc.subject.otherPotential Stabilityen_US
dc.subject.otherFTIR‐ATR Spectroscopyen_US
dc.subject.otherElectrochemical Impedance Spectroscopyen_US
dc.titleThe Water Uptake of Plasticized Poly(vinyl chloride) Solid‐Contact Calcium‐Selective Electrodesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, The University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109‐1055, USAen_US
dc.contributor.affiliationotherLaboratory of Analytical Chemistry, Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI‐20500 Åbo, Finlanden_US
dc.contributor.affiliationotherAcademy of Finland, Helsinki, Finlanden_US
dc.contributor.affiliationotherDepartment of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H‐1111 Budapest, Szt. Géllert tér 4, Hungaryen_US
dc.contributor.affiliationotherResearch Group of Technical Analytical Chemistry of the Hungarian Academy of Sciences, H‐1111 Budapest, Szt. Géllert tér 4, Hungaryen_US
dc.contributor.affiliationotherLaboratory of Analytical Chemistry, Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI‐20500 Åbo, Finlanden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86920/1/2156_ftp.pdf
dc.identifier.doi10.1002/elan.201100219en_US
dc.identifier.sourceElectroanalysisen_US
dc.identifier.citedreferenceN. Oyama, T. Hirokawa, S. Yamaguchi, N. Ushizawa, T. Shimomura, Anal. Chem. 1987, 59, 258.en_US
dc.identifier.citedreferenceA. Cadogan, Z. Gao, A. Lewenstam, A. Ivaska, D. Diamond, Anal. Chem. 1992, 64, 2496.en_US
dc.identifier.citedreferenceJ. Bobacka, M. McCarrick, A. Lewenstam, A. Ivaska, Analyst 1994, 119, 1985.en_US
dc.identifier.citedreferenceA. Lewenstam, J. Bobacka, A. Ivaska, J. Electroanal. Chem. 1994, 368, 23.en_US
dc.identifier.citedreferenceJ. Bobacka, Z. Q. Gao, A. Ivaska, A. Lewenstam, J. Electroanal. Chem. 1994, 368, 33.en_US
dc.identifier.citedreferenceA. Michalska, A. Hulanicki, A. Lewenstam, Analyst 1994, 119, 2417.en_US
dc.identifier.citedreferenceJ. Bobacka, A. Lewenstam, A. Ivaska, Talanta 1993, 40, 1437.en_US
dc.identifier.citedreferenceM. Grzeszczuk, J. Bobacka, A. Ivaska, J. Electroanal. Chem. 1993, 362, 287.en_US
dc.identifier.citedreferenceA. Ivaska, Electroanalysis 1991, 3, 247.en_US
dc.identifier.citedreferenceA. Cadogan, A. Lewenstam, A. Ivaska, Talanta 1992, 39, 617.en_US
dc.identifier.citedreferenceA. Michalska, A. Lewenstam, A. Ivaska, A. Hulanicki, Electroanalysis 1993, 5, 261.en_US
dc.identifier.citedreferenceA. Lewenstam, A. Michalska, A. Ivaska, Chemia Analityczna 1995, 40, 587.en_US
dc.identifier.citedreferenceT. Lindfors, A. Ivaska, J. Electroanal. Chem. 2002, 531, 43.en_US
dc.identifier.citedreferenceT. Lindfors, H. Sandberg, A. Ivaska, Synth. Met. 2004, 142, 231.en_US
dc.identifier.citedreferenceM. Fibbioli, W. E. Morf, M. Badertscher, N. F. de Rooij, E. Pretsch, Electroanalysis 2000, 12, 1286.en_US
dc.identifier.citedreferenceM. Fibbioli, K. Bandyopadhyay, S. G. Liu, L. Echegoyen, O. Enger, F. Diederich, D. Gingery, P. Bühlmann, H. Persson, U. W. Suter, E. Pretsch, Chem. Mater. 2002, 14, 1721.en_US
dc.identifier.citedreferenceY. F. Li, R. Y. Qian, Synth. Met. 1993, 53, 149.en_US
dc.identifier.citedreferenceT. Lindfors, F. Sundfors, L. Höfler, R. E. Gyurcsányi, Electroanalysis 2009, 21, 1914.en_US
dc.identifier.citedreferenceF. Sundfors, T. Lindfors, L. Höfler, R. E. Gyurcsányi, Anal. Chem. 2009, 81, 5925.en_US
dc.identifier.citedreferenceT. Lindfors, L. Höfler, G. Jágerszki, R. E. Gyurcsányi, Anal. Chem. 2011, 83, 4902.en_US
dc.identifier.citedreferenceZ. Li, X. Z. Li, S. Petrovic, D. J. Harrison, Anal. Chem. 1996, 68, 1717.en_US
dc.identifier.citedreferenceZ. Li, X. Z. Li, M. Rothmaier, D. J. Harrison, Anal. Chem. 1996, 68, 1726.en_US
dc.identifier.citedreferenceR. De Marco, J.‐P. Veder, G. Clarke, A. Nelson, K. Prince, E. Pretsch, E. Bakker, Phys. Chem. Chem. Phys. 2008, 10, 73.en_US
dc.identifier.citedreferenceJ. P. Veder, R. De Marco, G. Clarke, R. Chester, A. Nelson, K. Prince, E. Pretsch, E. Bakker, Anal. Chem. 2008, 80, 6731.en_US
dc.identifier.citedreferenceJ. P. Veder, K. Patel, G. Clarke, E. Grygolowicz‐Pawlak, D. S. Silvester, R. De Marco, E. Pretsch, E. Bakker, Anal. Chem. 2010, 82, 6203.en_US
dc.identifier.citedreferenceC. Appiah‐Kusi, S. J. Kew, E. Hall, Electroanalysis 2009, 21, 1992.en_US
dc.identifier.citedreferenceE. Malinowska, V. Oklejas, R. W. Hower, R. B. Brown, M. E. Meyerhoff, Sens. Actuators B 1996, 33, 161.en_US
dc.identifier.citedreferenceK. Kimura, T. Sunagawa, M. Yokoyama, Anal. Chem. 1997, 69, 2379.en_US
dc.identifier.citedreferenceI. A. Mostert, P. Anker, H. B. Jenny, U. Oesch, W. E. Morf, D. Ammann, W. Simon, Mikrochim. Acta 1985, 1, 33.en_US
dc.identifier.citedreferenceG. S. Cha, D. Liu, M. E. Meyerhoff, H. C. Cantor, A. R. Midgley, H. D. Goldberg, R. B. Brown, Anal. Chem. 1991, 63, 1666.en_US
dc.identifier.citedreferenceG. Marrazza, M. Mascini, Electroanalysis 1992, 4, 41.en_US
dc.identifier.citedreferenceM. E. Poplawski, R. B. Brown, K. L. Rho, S. Y. Yun, H. J. Lee, G. S. Cha, K. J. Paeng, Anal. Chim. Acta 1997, 355, 249.en_US
dc.identifier.citedreferenceI. J. Yoon, D. K. Lee, H. Nam, G. S. Cha, T. D. Strong, R. B. Brown, J. Electroanal. Chem. 1999, 464, 135.en_US
dc.identifier.citedreferenceL. Y. Heng, E. A. H. Hall, Anal. Chem. 2000, 72, 42.en_US
dc.identifier.citedreferenceL. Y. Heng, E. A. H. Hall, Anal. Chim. Acta 1996, 324, 47.en_US
dc.identifier.citedreferenceA. Shatkay, Anal. Chem. 1967, 39, 1056.en_US
dc.identifier.citedreferenceDiffusion in Polymers (Ed: P. Neogi ), Marcel Dekker, New York 1996.en_US
dc.identifier.citedreferenceF. Sundfors, L. Höfler, R. Gyurcsányi, T. Lindfors, Electroanalysis 2011, 23, 1769en_US
dc.identifier.citedreferenceT. Lindfors, J. Bobacka, A. Lewenstam, A. Ivaska, Analyst 1996, 121, 1823.en_US
dc.identifier.citedreferenceJ. Bobacka, Anal. Chem. 1999, 71, 4932.en_US
dc.identifier.citedreferenceS. Bodor, J. M. Zook, E. Lindner, K. Tóth, R. E. Gyurcsányi, Analyst 2008, 133, 635.en_US
dc.identifier.citedreferenceR. D. Armstrong, M. Todd, Electrochim. Acta 1987, 32, 155.en_US
dc.identifier.citedreferenceR. D. Armstrong, P. Nikitas, Electrochim. Acta 1985, 30, 1627.en_US
dc.identifier.citedreferenceY. Qin, Y. M. Mi, E. Bakker, Anal. Chim. Acta 2000, 421, 207.en_US
dc.identifier.citedreferenceT. Lindfors, J. Szűcs, F. Sundfors, R. E. Gyurcsányi, Anal. Chem. 2010, 82, 9425.en_US
dc.identifier.citedreferenceJ. Bobacka, T. Lindfors, M. McCarrick, A. Ivaska, A. Lewenstam, Anal. Chem. 1995, 67, 3819.en_US
dc.identifier.citedreferenceT. Lindfors, H. Aarnio, A. Ivaska, Anal. Chem. 2007, 79, 8571.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.