Show simple item record

Myogenin regulates denervation‐dependent muscle atrophy in mouse soleus muscle

dc.contributor.authorMacpherson, Peter C. D.en_US
dc.contributor.authorWang, Xunen_US
dc.contributor.authorGoldman, Daniel J.en_US
dc.date.accessioned2011-11-10T15:34:04Z
dc.date.available2012-10-01T18:34:27Zen_US
dc.date.issued2011-08en_US
dc.identifier.citationMacpherson, Peter C. D.; Wang, Xun; Goldman, Daniel (2011). "Myogenin regulates denervation‐dependent muscle atrophy in mouse soleus muscle." Journal of Cellular Biochemistry 112(8): 2149-2159. <http://hdl.handle.net/2027.42/86926>en_US
dc.identifier.issn0730-2312en_US
dc.identifier.issn1097-4644en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/86926
dc.description.abstractMuscle inactivity due to injury or disease results in muscle atrophy. The molecular mechanisms contributing to muscle atrophy are poorly understood. However, it is clear that expression of atrophy‐related genes, like Atrogin‐1 and MuRF‐1, are intimately tied to loss of muscle mass. When these atrophy‐related genes are knocked out, inactive muscles retain mass. Muscle denervation stimulates muscle atrophy and Myogenin (Myog) is a muscle‐specific transcription factor that is highly induced following muscle denervation. To investigate if Myog contributes to muscle atrophy, we have taken advantage of conditional Myog null mice. We show that in the denervated soleus muscle Myog expression contributes to reduced muscle force, mass, and cross‐sectional area. We found that Myog mediates these effects, at least in part, by regulating expression of the Atrogin‐1 and MuRF‐1 genes. Indeed Myog over‐expression in innervated muscle stimulates Atrogin‐1 gene expression and Myog over‐expression stimulates Atrogin‐1 promoter activity. Thus, Myog and the signaling cascades regulating its induction following muscle denervation may represent novel targets for therapies aimed at reducing denervation‐induced muscle atrophy. J. Cell. Biochem. 112: 2149–2159, 2011. © 2011 Wiley‐Liss, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherMyogeninen_US
dc.subject.otherAtrogin‐1en_US
dc.subject.otherMuRF‐1en_US
dc.subject.otherMuscle Massen_US
dc.subject.otherMuscle Forceen_US
dc.subject.otherMuscle Cross‐Sectional Areaen_US
dc.subject.otherMuscle Denervationen_US
dc.titleMyogenin regulates denervation‐dependent muscle atrophy in mouse soleus muscleen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumMolecular and Behavioral Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumMolecular and Behavioral Neuroscience Institute and Department of Biological Chemistry, University of Michigan, 5045 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109en_US
dc.identifier.pmid21465538en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86926/1/23136_ftp.pdf
dc.identifier.doi10.1002/jcb.23136en_US
dc.identifier.sourceJournal of Cellular Biochemistryen_US
dc.identifier.citedreferenceBodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ. 2001a. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294: 1704 – 1708.en_US
dc.identifier.citedreferenceBodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD. 2001b. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3: 1014 – 1019.en_US
dc.identifier.citedreferenceBrooks SV, Faulkner JA. 1988. Contractile properties of skeletal muscles from young, adult and aged mice. J Physiol 404: 71 – 82.en_US
dc.identifier.citedreferenceBuonanno A, Apone L, Morasso MI, Beers R, Brenner HR, Eftimie R. 1992. The MyoD family of myogenic factors is regulated by electrical activity: isolation and characterization of a mouse Myf‐5 cDNA. Nucleic Acids Res 20: 539 – 544.en_US
dc.identifier.citedreferenceCai D, Frantz JD, Tawa NE, Jr., Melendez PA, Oh BC, Lidov HG, Hasselgren PO, Frontera WR, Lee J, Glass DJ, Shoelson SE. 2004. IKKbeta/NF‐kappaB activation causes severe muscle wasting in mice. Cell 119: 285 – 298.en_US
dc.identifier.citedreferenceCao PR, Kim HJ, Lecker SH. 2005. Ubiquitin‐protein ligases in muscle wasting. Int J Biochem Cell Biol 37: 2088 – 2097.en_US
dc.identifier.citedreferenceCohen TJ, Waddell DS, Barrientos T, Lu Z, Feng G, Cox GA, Bodine SC, Yao TP. 2007. The histone deacetylase HDAC4 connects neural activity to muscle transcriptional reprogramming. J Biol Chem 282: 33752 – 33759.en_US
dc.identifier.citedreferenceEftimie R, Brenner HR, Buonanno A. 1991. Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity. Proc Natl Acad Sci USA 88: 1349 – 1353.en_US
dc.identifier.citedreferenceGoldman D, Brenner HR, Heinemann S. 1988. Acetylcholine receptor alpha‐, beta‐, gamma‐, and delta‐subunit mRNA levels are regulated by muscle activity. Neuron 1: 329 – 333.en_US
dc.identifier.citedreferenceGomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL. 2001. Atrogin‐1, a muscle‐specific F‐box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA 98: 14440 – 14445.en_US
dc.identifier.citedreferenceGrossman EJ, Roy RR, Talmadge RJ, Zhong H, Edgerton VR. 1998. Effects of inactivity on myosin heavy chain composition and size of rat soleus fibers. Muscle Nerve 21: 375 – 389.en_US
dc.identifier.citedreferenceHasty P, Bradley A, Morris JH, Edmondson DG, Venuti JM, Olson EN, Klein WH. 1993. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364: 501 – 506.en_US
dc.identifier.citedreferenceHughes SM, Taylor JM, Tapscott SJ, Gurley CM, Carter WJ, Peterson CA. 1993. Selective accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones. Development 118: 1137 – 1147.en_US
dc.identifier.citedreferenceHyatt JP, Roy RR, Baldwin KM, Edgerton VR. 2003. Nerve activity‐independent regulation of skeletal muscle atrophy: role of MyoD and myogenin in satellite cells and myonuclei. Am J Physiol Cell Physiol 285: C1161 – C1173.en_US
dc.identifier.citedreferenceKnapp JR, Davie JK, Myer A, Meadows E, Olson EN, Klein WH. 2006. Loss of myogenin in postnatal life leads to normal skeletal muscle but reduced body size. Development 133: 601 – 610.en_US
dc.identifier.citedreferenceKostrominova TY, Macpherson PC, Carlson BM, Goldman D. 2000. Regulation of myogenin protein expression in denervated muscles from young and old rats. Am J Physiol Regul Integr Comp Physiol 279: R179 – R188.en_US
dc.identifier.citedreferenceMammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M. 2007. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6: 458 – 471.en_US
dc.identifier.citedreferenceMejat A, Ramond F, Bassel‐Duby R, Khochbin S, Olson EN, Schaeffer L. 2005. Histone deacetylase 9 couples neuronal activity to muscle chromatin acetylation and gene expression. Nat Neurosci 8: 313 – 321.en_US
dc.identifier.citedreferenceMejat A, Ravel‐Chapuis A, Vandromme M, Schaeffer L. 2003. Synapse‐specific gene expression at the neuromuscular junction. Ann N Y Acad Sci 998: 53 – 65.en_US
dc.identifier.citedreferenceMittal A, Bhatnagar S, Kumar A, Lach‐Trifilieff E, Wauters S, Li H, Makonchuk DY, Glass DJ. 2010. The TWEAK‐Fn14 system is a critical regulator of denervation‐induced skeletal muscle atrophy in mice. J Cell Biol 188: 833 – 849.en_US
dc.identifier.citedreferenceMoresi V, Williams AH, Meadows E, Flynn JM, Potthoff MJ, McAnally J, Shelton JM, Backs J, Klein WH, Richardson JA, Bassel‐Duby R, Olson EN. 2010. Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell 143: 35 – 45.en_US
dc.identifier.citedreferenceMourkioti F, Kratsios P, Luedde T, Song YH, Delafontaine P, Adami R, Parente V, Bottinelli R, Pasparakis M, Rosenthal N. 2006. Targeted ablation of IKK2 improves skeletal muscle strength, maintains mass, and promotes regeneration. J Clin Invest 116: 2945 – 2954.en_US
dc.identifier.citedreferenceRamachandran R, Fausett BV, Goldman D. 2010. Ascl1a regulates Muller glia dedifferentiation and retinal regeneration through a Lin‐28‐dependent, let‐7 microRNA signalling pathway. Nat Cell Biol 12: 1101 – 1107.en_US
dc.identifier.citedreferenceRommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ. 2001. Mediation of IGF‐1‐induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3: 1009 – 1013.en_US
dc.identifier.citedreferenceSacheck JM, Hyatt JP, Raffaello A, Jagoe RT, Roy RR, Edgerton VR, Lecker SH, Goldberg AL. 2007. Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. FASEB J 21: 140 – 155.en_US
dc.identifier.citedreferenceSandri M, Lin J, Handschin C, Yang W, Arany ZP, Lecker SH, Goldberg AL, Spiegelman BM. 2006. PGC‐1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy‐specific gene transcription. Proc Natl Acad Sci USA 103: 16260 – 16265.en_US
dc.identifier.citedreferenceSandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL. 2004. Foxo transcription factors induce the atrophy‐related ubiquitin ligase atrogin‐1 and cause skeletal muscle atrophy. Cell 117: 399 – 412.en_US
dc.identifier.citedreferenceStitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ. 2004. The IGF‐1/PI3K/Akt pathway prevents expression of muscle atrophy‐induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14: 395 – 403.en_US
dc.identifier.citedreferenceTang H, Goldman D. 2006. Activity‐dependent gene regulation in skeletal muscle is mediated by a histone deacetylase (HDAC)‐Dach2‐myogenin signal transduction cascade. Proc Natl Acad Sci USA 103: 16977 – 16982.en_US
dc.identifier.citedreferenceTang H, Macpherson P, Argetsinger LS, Cieslak D, Suhr ST, Carter‐Su C, Goldman D. 2004. CaM kinase II‐dependent phosphorylation of myogenin contributes to activity‐dependent suppression of nAChR gene expression in developing rat myotubes. Cell Signal 16: 551 – 563.en_US
dc.identifier.citedreferenceTang H, Macpherson P, Marvin M, Meadows E, Klein WH, Yang XJ, Goldman D. 2009. A histone deacetylase 4/myogenin positive feedback loop coordinates denervation‐dependent gene induction and suppression. Mol Biol Cell 20: 1120 – 1131.en_US
dc.identifier.citedreferenceTang H, Sun Z, Goldman D. 2001. CaM kinase II‐dependent suppression of nicotinic acetylcholine receptor delta‐subunit promoter activity. J Biol Chem 276: 26057 – 26065.en_US
dc.identifier.citedreferenceTang H, Veldman MB, Goldman D. 2006. Characterization of a muscle‐specific enhancer in human MuSK promoter reveals the essential role of myogenin in controlling activity‐dependent gene regulation. J Biol Chem 281: 3943 – 3953.en_US
dc.identifier.citedreferenceVentadour S, Attaix D. 2006. Mechanisms of skeletal muscle atrophy. Curr Opin Rheumatol 18: 631 – 635.en_US
dc.identifier.citedreferenceVenuti JM, Morris JH, Vivian JL, Olson EN, Klein WH. 1995. Myogenin is required for late but not early aspects of myogenesis during mouse development. J Cell Biol 128: 563 – 576.en_US
dc.identifier.citedreferenceVivian JL, Gan L, Olson EN, Klein WH. 1999. A hypomorphic myogenin allele reveals distinct myogenin expression levels required for viability, skeletal muscle development, and sternum formation. Dev Biol 208: 44 – 55.en_US
dc.identifier.citedreferenceVoytik SL, Przyborski M, Badylak SF, Konieczny SF. 1993. Differential expression of muscle regulatory factor genes in normal and denervated adult rat hindlimb muscles. Dev Dyn 198: 214 – 224.en_US
dc.identifier.citedreferenceZhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL. 2007. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6: 472 – 483.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.