Show simple item record

Combinatorial Nanopowder Synthesis Along the ZnO–Al 2 O 3 Tie Line Using Liquid‐Feed Flame Spray Pyrolysis

dc.contributor.authorKim, Minen_US
dc.contributor.authorLai, Samsonen_US
dc.contributor.authorLaine, Richard M.en_US
dc.date.accessioned2011-11-10T15:34:12Z
dc.date.available2012-12-03T21:17:29Zen_US
dc.date.issued2011-10en_US
dc.identifier.citationKim, Min; Lai, Samson; Laine, Richard M. (2011). "Combinatorial Nanopowder Synthesis Along the ZnO–Al 2 O 3 Tie Line Using Liquid‐Feed Flame Spray Pyrolysis." Journal of the American Ceramic Society 94(10). <http://hdl.handle.net/2027.42/86932>en_US
dc.identifier.issn0002-7820en_US
dc.identifier.issn1551-2916en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/86932
dc.publisherBlackwell Publishing Incen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleCombinatorial Nanopowder Synthesis Along the ZnO–Al 2 O 3 Tie Line Using Liquid‐Feed Flame Spray Pyrolysisen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109‐2136en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86932/1/jace4585.pdf
dc.identifier.doi10.1111/j.1551-2916.2011.04585.xen_US
dc.identifier.sourceJournal of the American Ceramic Societyen_US
dc.identifier.citedreferenceH. Hosono, H. Ohta, M. Orita, K. Ueda, and M. Hirano, “ Frontier of Transparent Conductive Oxide Thin Films,” Vacuum, 66 [3–4] 419 – 25 ( 2002 ).en_US
dc.identifier.citedreferenceI. Hamberg and C. G. Granqvist, “ Evaporated Sn‐Doped In 2 O 3 Films: Basic Optical Properties and Applications to Energy-Efficient Windows,” J. Appl. Phys., 60 [11] R123 – 59 ( 1986 ).en_US
dc.identifier.citedreferenceP. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan, and R. M. Perks, “ Basic Materials Physics of Transparent Conducting Oxides,” Dalton Trans., [19] 2995 – 3002 ( 2004 ).en_US
dc.identifier.citedreferenceH. Hono, “ Built‐in Nanostructures in Transparent Oxides for Novel Photonic and Electronic Functions Materials,” Int. J. Appl. Ceram. Technol., 1 [2] 106 – 18 ( 2004 ).en_US
dc.identifier.citedreferenceD. S. Ginley and C. Bright, “ Transparent Conducting Oxides,” MRS Bull., 25 [8] 15 – 8 ( 2000 ).en_US
dc.identifier.citedreferenceB. G. Lewis and D. C. Paine, “ Applications and Processing of Transparent Conducting Oxides,” MRS Bull., 25 [8] 22 – 7 ( 2000 ).en_US
dc.identifier.citedreferenceH. Kawazoe, H. Yanagi, K. Ueda, and H. Hosono, “ Transparent p‐Type Conducting Oxides: Design and Fabrication of p–n Heterojunctions,” MRS Bull., 25 [8] 28 – 36 ( 2000 ).en_US
dc.identifier.citedreferenceT. Minami, “ New n‐Type Transparent Conducting Oxides,” MRS Bull., 25 [8] 38 – 44 ( 2000 ).en_US
dc.identifier.citedreferenceR. G. Gordon, “ Criteria for Choosing Transparent Conductors,” MRS Bull., 25 [8] 52 – 7 ( 2000 ).en_US
dc.identifier.citedreferenceT. J. Coutts, D. L. Young, and X. Li, “ Characterization of Transparent Conducting Oxides,” MRS Bull., 25 [8] 58 – 65 ( 2000 ).en_US
dc.identifier.citedreferenceK. Wasa, S. Hayakawa, and T. Hada, “ Electrical and Optical Properties of Sputtered n – p ZnO–Si Heterojunctions,” Jpn. J. Appl. Phys., 10 [12] 1732 ( 1971 ).en_US
dc.identifier.citedreferenceZ. Jin, I. Hamberg, and C. G. Granqvist, “ Optical Properties of Sputter‐Deposited ZnO:Al Thin Films,” J. Appl. Phys., 64 [10] 5117 – 32 ( 1988 ).en_US
dc.identifier.citedreferenceM. J. Alam and D. C. Cameron, “ Preparation and Properties of Transparent Conductive Aluminum‐Doped Zinc Oxide Thin Films by Sol–Gel Process,” J. Vac. Sci. Technol. Sect. A, 19 [4] 1642 – 6 ( 2001 ).en_US
dc.identifier.citedreferenceT. Schuler and M. A. Aegerter, “ Optical, Electrical and Structural Properties of Sol Gel ZnO:Al Coatings,” Thin Solid Films, 351 [1–3] 125 – 31 ( 1999 ).en_US
dc.identifier.citedreferenceS. H. Jeong, J. W. Lee, S. B. Lee, and J. H. Boo, “ Deposition of Aluminum‐Doped Zinc Oxide Films by RF Magnetron Sputtering and Study of their Structural, Electrical and Optical Properties,” Thin Solid Films, 435 [1–2] 78 – 82 ( 2003 ).en_US
dc.identifier.citedreferenceT. Suchiya, T. Emoto, and T. Sei, “ Preparation and Properties of Transparent Conductive Thin Films by the Sol–Gel Process,” J. Non-Cryst. Solids, 178, 327 – 32 ( 1994 ).en_US
dc.identifier.citedreferenceT. Minami, H. Nanto, S. Shooji, and S. Takata, “ The Stability of Zinc Oxide Transparent Electrodes Fabricated by R. F. Magnetron Sputtering,” Thin Solid Films, 111 [2] 167 – 74 ( 1984 ).en_US
dc.identifier.citedreferenceT. Minami, H. Nanto, and S. Takata, “ Highly Conductive and Transparent Aluminum Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering,” Jpn. J. Appl. Phys., 23 [5] L280 – 2 ( 1984 ).en_US
dc.identifier.citedreferenceC. R. Bickmore, K. F. Waldner, D. R. Treadwell, and R. M. Laine, “ Ultrafine Spinel Powders by Flame Spray Pyrolysis of a Magnesium Aluminum Double Alkoxide,” J. Am. Ceram. Soc., 79 [5] 1419 – 23 ( 1996 ).en_US
dc.identifier.citedreferenceC. R. Bickmore, K. F. Waldner, R. Baranwal, T. Hinklin, D. R. Treadwell, and R. M. Laine, “ Ultrafine Titania by Flame Spray Pyrolysis of a Titanatrane Complex: Part I,” J. Eur. Ceram. Soc., 18 [4] 287 – 97 ( 1998 ).en_US
dc.identifier.citedreferenceA. C. Sutorik, S. S. Neo, T. Hinklin, R. Baranwal, D. R. Treadwell, R. Narayanan, and R. M. Laine, “  ‘Synthesis of Ultrafine β’‐Alumina Powders Via Flame Spray Pyrolysis of Polymeric Precursors,” J. Am. Ceram. Soc., 81 [6] 1477 – 86 ( 1998 ).en_US
dc.identifier.citedreferenceT. Hinklin, B. Toury, C. Gervais, F. Babonneau, J. J. Gislason, R. W. Morton, and R. M. Laine, “ Liquid‐Feed Flame Spray Pyrolytic Synthesis of Nanoalumina Powders,” Chem. Mater., 16 [1] 21 – 30 ( 2004 ).en_US
dc.identifier.citedreferenceR. M. Laine, R. Baranwal, T. Hinklin, D. Treadwell, A. Sutorik, C. R. Bickmore, K. Waldner, and S. S. Neo, “ Making Nanosized Oxide Powders from Precursors by Flame Spray Pyrolysis ”; pp. 17 – 24 in Novel Synthetic and Processing Routes to Ceramics. Key Engineering Materials, Vols. 159–160, Edited by K. Uematsu, and H. Otsuka. K. Trans Tech Publ. Ltd., Switzerland, 1998.en_US
dc.identifier.citedreferenceR. Baranwal, M. P. Villar, R. Garcia, and R. M. Laine, “ Synthesis, Characterization, and Sintering Behavior of Nano‐Mullite Powder and Powder Compacts,” J. Am. Ceram. Soc., 84 [5] 951 – 61 ( 2001 ).en_US
dc.identifier.citedreferenceG. Williams, S. C. Rand, T. Hinklin, and R. M. Laine, “ Laser Action in Strongly Scattering Rare‐Earth‐Doped Dielectric Nanophosphors,” Phys. Rev. A, 65 [1] 013807 – 6 ( 2002 ).en_US
dc.identifier.citedreferenceS. Kim, J. J. Gislason, R. W. Morton, X. Pan, H. Sun, and R. M. Laine, “ Liquid‐Feed Flame Spray Pyrolysis of Nanopowders in the Alumina‐Titania System,” Chem. Mater., 16 [12] 2336 – 43 ( 2004 ).en_US
dc.identifier.citedreferenceJ. Marchal, T. Hinklin, R. Baranwal, T. Johns, and R. M. Laine, “ Yttrium Aluminum Garnet Nanopowders by Flame Spray Pyrolysis,” Chem. Mater., 16 [5] 822 – 31 ( 2004 ).en_US
dc.identifier.citedreferenceR. M. Laine, J. Marchal, H. J. Sun, and X. Q. Pan, “ A New Y 3 Al 5 O 12 Phase Produced By Liquid‐Feed Flame Spray Pyrolysis (LF‐FSP),” Adv. Mater., 17 [7] 830 – 3 ( 2005 ).en_US
dc.identifier.citedreferenceJ. A. Azurdia, J. C. Marchal, P. Shea, H. Sun, X. Q. Pan, and R. M. Laine, “ Liquid‐Feed Flame Spray Pyrolysis (LF‐FSP) as a Method of Producing Mixed‐Metal Oxide Nanopowders of Potential Interest as Catalytic Materials. Nanopowders Along the NiO–Al 2 O 3 Tie‐Line Including (NiO) 0.22 (Al 2 O 3 ) 0.78, a New Inverse Spinel Composition,” Chem. Mater., 18 [9] 731 – 9 ( 2006 ).en_US
dc.identifier.citedreferenceJ. A. Azurdia, J. C. Marchal, and R. M. Laine, “ Combinatorial Processing of Mixed‐Metal Oxide Nanopowders Along the Co 3 O 4 –Al 2 O 3 Tie Line Using Liquid‐Feed Flame Spray Pyrolysis (LF‐FSP),” J. Am. Ceram. Soc., 89 [9] 2749 – 56 ( 2006 ).en_US
dc.identifier.citedreferenceT. R. Hinklin and R. M. Laine, “ Synthesis of Metastable Phases in the Magnesium Spinel–Alumina System,” Chem. Mater., 20 [2] 553 – 8 ( 2008 ).en_US
dc.identifier.citedreferenceM. Kim and R. M. Laine, “ Combinatorial Processing of Mixed‐Metal Oxide Nanopowders Along the ZrO 2 –Al 2 O 3 Tie Line Using Liquid‐Feed Flame Spray Pyrolysis (LF‐FSP),” J. Ceram. Process. Res., 8 [2] 129 – 36 ( 2007 ).en_US
dc.identifier.citedreferenceM. Kim, T. R. Hinklin, and R. M. Laine, “ Core‐Shell Nanostructured Nanopowders Along (CeO x ) x (Al 2 O 3 ) 1− x Tie‐Line by Liquid‐Feed Flame Spray Pyrolysis (LF‐FSP),” Chem. Mater., 20 [16] 5154 – 62 ( 2008 ).en_US
dc.identifier.citedreferenceT. T. Kodas and M. J. Hampden‐Smith, Aerosol Processing of Materials. Wiley‐VCH, New York, 1999.en_US
dc.identifier.citedreferenceM. Winterer, Nanocrystalline Ceramics, Synthesis and Structure. Springer, Lausanne, 2002.en_US
dc.identifier.citedreferenceF. E. Luborsky, “ Highly Coercive Materials, Development of Elongated Particle Magnets,” J. Appl. Phys., 32, S171 – 9 ( 1961 ).en_US
dc.identifier.citedreferenceB. L. Cushing, V. L. Kolesnichenko, and C. J. O'Connor, “ Recent Advances in the Liquid‐Phase Syntheses of Inorganic Nanoparticles,” Chem. Rev., 104, 3893 – 946 ( 2004 ).en_US
dc.identifier.citedreferenceM. T. Swihart, “ Vapor‐Phase Synthesis of Nanoparticles,” Curr. Opin. Coll. Inter. Sci., 8, 127 – 33 ( 2003 ).en_US
dc.identifier.citedreferenceF. E. Kruis, H. Fissan, and A. Peled, “ Synthesis of Nanoparticles in the Gas Phase for Electronic, Optical and Magnetic Applications—A Review,” J. Aerosol Sci., 29, 511 – 35 ( 2004 ).en_US
dc.identifier.citedreferenceL. Madler, “ Liquid‐Fed Aerosol Reactors for One‐Step Synthesis of Nano‐Structured Particles,” Kona, 22, 107 – 20 ( 2004 ).en_US
dc.identifier.citedreferenceR. Strobel and S. E. Pratsinis, “ Flame Aerosol Synthesis of Smart Nanostructured Materials,” J. Mater. Chem., 17, 4743 – 56 ( 2007 ).en_US
dc.identifier.citedreferenceR. M. Laine, “ Liquid‐Flame Spray Pyrolysis (LF‐FSP) in the Synthesis of Single and Mixed‐Metal Oxide Nanopowders ”; in Ceramics Science and Technology, Vol. 3, Edited by R. Riedel, and I.‐W. Chen. Wiley VCH Weinham, in press.en_US
dc.identifier.citedreferenceE. Arca, K. Fleischer, and I. V. Shvets, “ Influence of the Precursors and Chemical Composition of the Solution on the Properties of ZnO Thin Films Grown by Spray Pyrolysis,” J. Phys. Chem. C, 113, 21074 – 81 ( 2009 ).en_US
dc.identifier.citedreferenceJ. U. Brehma, M. Winterer, and H. Hahn, “ Synthesis and Local Structure of Doped Nanocrystalline Zinc Oxides,” J. Appl. Phys., 100, 064311, 9pp ( 2006 ).en_US
dc.identifier.citedreferenceS. Suwanboon, P. Amornpitoksuk, A. Haidoux, and J. C. Tedenac, “ Structural and Optical Properties of Undoped and Aluminium Doped Zinc Oxide Nanoparticles Via Precipitation Method at Low Temperature,” J. Alloys Compd., 462, 335 – 9 ( 2008 ).en_US
dc.identifier.citedreferenceT. Ogi, D. Hidayat, F. Iskandar, A. Purwanto, and K. Okuyama, “ Direct Synthesis of Highly Crystalline Transparent Conducting Oxide Nanoparticles by Low Pressure Spray Pyrolysis,” Adv. Powder Technol., 20, 203 – 9 ( 2009 ).en_US
dc.identifier.citedreferenceB. Houng and C.‐J. Huang, “ Structure and Properties of Ag Embedded Aluminum Doped ZnO Nanocomposite Thin Films Prepared Through a Sol–Gel Process,” Surf. Coat. Technol., 201, 3188 – 92 ( 2006 ).en_US
dc.identifier.citedreferenceZ. Ben Ayadi, L. El Mir, K. Djessas, and S. Alaya, “ The Properties of Aluminum‐Doped Zinc Oxide Thin Films Prepared by rf‐Magnetron Sputtering from Nanopowder Targets,” Mater. Sci. Engg. C, 28, 613 – 7 ( 2008 ).en_US
dc.identifier.citedreferenceS. Cho, S.‐H. Jung, J‐W. Jang, E. Oh, and K.‐H. Lee, “ Simultaneous Synthesis of Al‐Doped ZnO Nanoneedles and Zinc, Aluminum Hydroxides through Use of a Seed Layer,” Cryst. Growth Design, 8, 4553 – 8 ( 2008 ).en_US
dc.identifier.citedreferenceX. L. Cheng, H. Zhao, L. H. Huo, S. Gao, and J. G. Zhao, “ ZnO Nanoparticulate Thin Film: Preparation, Characterization and Gas-Sensing Property,” Sensors Actuators B, 102, 248 – 52 ( 2004 ).en_US
dc.identifier.citedreferenceJ. B. McPeak and K. M. Baxter, “ Microreactor for High‐Yield Chemical Bath Deposition of Semiconductor Nanowires: ZnO Nanowire Case Study,” Ind. Eng. Chem. Res., 48, 5954 – 61 ( 2009 ).en_US
dc.identifier.citedreferenceJ.‐S. Na, Q. Peng, G. Scarel, and G. N. Parsons, “ Role of Gas Doping Sequence in Surface Reactions and Dopant Incorporation During Atomic Layer Deposition of Al‐Doped ZnO,” Chem. Mater., 21, 5585 – 93 ( 2009 ).en_US
dc.identifier.citedreferenceS. Hartner, M. Ali, C. Schulz, H. Winterer, and M. Wiggers, “ Electrical Properties of Aluminum‐Doped Zinc Oxide (AZO) Nanoparticles Synthesized by Chemical Vapor Synthesis,” Nanotechnology, 20, 445701 ( 2009 ).en_US
dc.identifier.citedreferenceA. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, “ ZnO Nanotube Based Dye‐Sensitized Solar Cells,” Nano Lett., 7, 2183 – 7 ( 2007 ).en_US
dc.identifier.citedreferenceT. Strachowski, E. Grzanka, W. Lojkowski, A. Presz, M. Godlewski, S. Yatsunenko, H. Matysiak, R. R. Piticescu, and C. J. Monty, “ Morphology and Luminescence Properties of Zinc Oxide Nanopowders Doped with Aluminum Ions Obtained by Hydrothermal and Vapor Condensation Methods,” J. Appl. Phys., 102, 073513 ( 2007 ).en_US
dc.identifier.citedreferenceJ. D. Merchant and M. Cocivera, “ Preparation and Doping of Zinc Oxide Using Spray Pyrolysis,” Chem. Mater., 7, 1742 – 9 ( 1995 ).en_US
dc.identifier.citedreferenceT. Masaki, S.‐J. Kim, H. Watanabe, K. Miyamoto, M. Ohno, and K.‐H. Kim, “ Synthesis of Nano‐Sized ZnO Powders Prepared by Precursor Process,” J. Ceram. Process. Res., 4, 135 – 9 ( 2003 ).en_US
dc.identifier.citedreferenceR. R. Piticescu, R. M. Piticescu, and C. J. Monty, “ Synthesis of Al‐Doped ZnO Nanomaterials with Controlled Luminescence,” J. Eur. Ceram. Soc., 26, 2979 – 83 ( 2006 ).en_US
dc.identifier.citedreferenceR. M. Laine, J. C. Marchal, H. P. Sun, and X. Q. Pan, “ Nano‐α‐Al 2 O 3 by Liquid‐Feed Flame Spray Pyrolysis (LF‐FSP) of Nano‐Transition Aluminas,” Nat. Mater., 5 [9] 710 – 2 ( 2006 ).en_US
dc.identifier.citedreferenceE. N. Bunting, “ Phase Equilibria in the System SiO 2. ZnO–Al 2 O 3,” Bur. Stand. J. Res., 8, 279 – 9 ( 1932 ).en_US
dc.identifier.citedreferenceR. Hansson, P. C. Hayes, and E. Jak, “ Experimental Study of Phase Equilibria in the Al–Fe–Zn–O System in Air,” Metall. Mater. Trans. B, 35 [4] 633 – 42 ( 2004 ).en_US
dc.identifier.citedreferenceH. Kim, A. Pique, J. S. Horwitz, H. Murata, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, “ Effect of Aluminum Doping on Zinc Oxide Thin Films Grown by Pulsed Laser Deposition for Organic Light‐Emitting Devices,” Thin Solid Films, 377–378 [1] 798 – 802 ( 2000 ).en_US
dc.identifier.citedreferenceH. Cao, C. Sun, Z. Pei, A. Wang, L. Wen, R. Hong, and X. Jiang, “ Properties of Transparent Conducting ZnO:Al Oxide Thin Films and their Application for Molecular Organic Light‐Emitting Diodes,” J. Mater. Sci.: Mater. Elect., 15 [3] 169 – 74 ( 2004 ).en_US
dc.identifier.citedreferenceR. Hansson, P. C. Hayes, and E. Jak, “ Experimental Study of Phase Equilibria in the Al–Fe–Zn–O System in Air,” Metall. Mater. Trans. B, 35 [4] 633 – 42 ( 2004 ).en_US
dc.identifier.citedreferenceX. Liu and R. E. Truitt, “ DRFT‐IR Studies of the Surface of γ‐Alumina,” J. Am. Chem. Soc., 119 [41] 9856 – 60 ( 1997 ).en_US
dc.identifier.citedreferenceJ. B. Peri, “ Infrared and Gravimetric Study of the Structure Hydration of γ‐Alumina,” J. Phys. Chem., 69 [1] 211 – 9 ( 1965 ).en_US
dc.identifier.citedreferenceS. Shen, K. Hidahat, L. Yu, and S. Kawi, “ Simple Hydrothermal Synthesis of Nanostructured and Nanorod Zn–Al Complex Oxides as Novel Nanocatalysts,” Adv. Mater., 16 [6] 541 – 5 ( 2004 ).en_US
dc.identifier.citedreferenceA. Adak, A. Pathak, and P. Pramanik, “ Characterization of ZnAl 2 O 4 Nanocrystals Prepared by the Polyvinyl Alcohol Evaporation Route,” J. Mater. Sci. Lett., 17 [7] 559 – 61 ( 1998 ).en_US
dc.identifier.citedreferenceS. V. Tsybulya, L. P. Solov'eva, L. M. Plyasova, and O. P. Krivoruchko, “ Complete‐Profile Analysis Applied to Nonstoichiometric Spinels,” J. Struct. Chem., 32 [1] 386 – 8 ( 1991 ).en_US
dc.identifier.citedreferenceA. N. Tsvigunov, V. G. Khotin, A. S. Krasikov, and B. S. Svetlov, “ Shock‐Wave Synthesis of Nonstoichiometric Aluminizing Spinel and Gahnite,” Glass Ceram., 58 [9–10] 353 – 5 ( 2002 ).en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.