Show simple item record

A model‐based dead‐band compensation for the dual‐active‐bridge isolated bidirectional DC–DC converter

dc.contributor.authorBai, Huaen_US
dc.contributor.authorNie, Zilingen_US
dc.contributor.authorChunting Mi, Chrisen_US
dc.date.accessioned2011-11-10T15:34:36Z
dc.date.available2013-01-02T16:32:10Zen_US
dc.date.issued2011-11en_US
dc.identifier.citationBai, Hua; Nie, Ziling; Chunting Mi, Chris (2011). "A model‐based dead‐band compensation for the dual‐active‐bridge isolated bidirectional DC–DC converter." IEEJ Transactions on Electrical and Electronic Engineering 6(6): 517-524. <http://hdl.handle.net/2027.42/86950>en_US
dc.identifier.issn1931-4973en_US
dc.identifier.issn1931-4981en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/86950
dc.description.abstractThe dual active bridge (DAB)‐based isolated bidirectional converter has been used to realize bidirectional energy flow while offering needed isolation between the primary and secondary side: for example, the battery side and grid side of one plug‐in hybrid electric vehicle (PHEV). Even though the operation of a DAB‐based DC–DC converter is straightforward, various transient processes exist, such as the dead‐band effect, which deeply affects the dynamic performance of the converter in real world applications. Compensation of this effect is not easy because of the strong nonlinearity of the entire system. This paper quantitatively analyzed the dead‐band effect at different output powers, and presented a model‐based controller to realize the nonlinear dead‐band compensation strategy, which can effectively mitigate demerits of the traditional PI‐based control strategy. The proposed control algorithm is validated through theoretical simulation and experimental results. © 2011 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherDead‐Banden_US
dc.subject.otherDC–DC Converteren_US
dc.subject.otherPhase‐Shiften_US
dc.subject.otherPI Controlleren_US
dc.subject.otherShort Timescaleen_US
dc.titleA model‐based dead‐band compensation for the dual‐active‐bridge isolated bidirectional DC–DC converteren_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Electrical and Computer Engineering, University of Michigan‐Dearborn, Dearborn, MI 48141, USAen_US
dc.contributor.affiliationotherDepartment of Electrical and Computer Engineering, Ketttering University, Flint, MI 48504, USAen_US
dc.contributor.affiliationotherCollege of Electrical and Electronics Engineering, Hua Zhong University of Science and Technology, Hubei 430074, Chinaen_US
dc.contributor.affiliationotherECE Office, Kettering University, 1700 3rd Ave, MI 48504, USA.en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86950/1/20690_ftp.pdf
dc.identifier.doi10.1002/tee.20690en_US
dc.identifier.sourceIEEJ Transactions on Electrical and Electronic Engineeringen_US
dc.identifier.citedreferenceEmadi A, Lee YJ, Rajashekara K. Power electronics and motor drives in electric, hybrid electric, and plug‐in hybrid electric vehicles. IEEE Transactions on Industrial Electronics 2008; 55 (6): 2237 – 2245.en_US
dc.identifier.citedreferenceGong Q, Li Y, Peng Z‐R. Trip‐based optimal power management of plug‐in hybrid electric vehicles. IEEE Transactions on Vehicular Technology 2008; 57 (6): 3393 – 3401.en_US
dc.identifier.citedreferenceBhattacharya T, Giri VS, Mathew K, Umanand L. Multiphase bidirectional flyback converter topology for hybrid electric vehicles. IEEE Transactions on Industrial Electronics 2009; 56 (1): 78 – 84.en_US
dc.identifier.citedreferenceMoreno J, Ortuzar ME, Dixon JW. Energy‐management system for a hybrid electric vehicle, using ultracapacitors and neural networks. IEEE Transactions on Industrial Electronics 2006; 53 (2): 614 – 623.en_US
dc.identifier.citedreferenceChau KT, Chan CC, Chunhua L. Overview of permanent‐magnet brushless drives for electric and hybrid electric vehicles. IEEE Transactions on Industrial Electronics 2008; 55 (6): 2246 – 2257.en_US
dc.identifier.citedreferenceYoon H‐K, Han S‐K, Choi E‐S, Moon G‐W, Youn M‐J. Zero‐voltage switching and soft‐commutating two‐transformer full‐bridge PWM converter using the voltage‐ripple. IEEE Transactions on Industrial Electronics 2008; 55 (3): 1478 – 1488.en_US
dc.identifier.citedreferenceKim SY, Nam K, Song H‐S, Kim H‐G. Fault diagnosis of a ZVS DC–DC converter based on DC‐link current pulse shapes. IEEE Transactions on Industrial Electronics 2008; 55 (3): 1491 – 1494.en_US
dc.identifier.citedreferencePark K‐B, Kim C‐E, Moon G‐W, Youn M‐J. Voltage oscillation reduction technique for phase‐shift full‐bridge converter. IEEE Transactions on Industrial Electronics 2007; 54 (5): 2779 – 2790.en_US
dc.identifier.citedreferenceLee J‐P, Min B‐D, Tae‐Jin K, Dong‐Wook Y, Ji‐Yoon Y. A novel topology for photovoltaic DC/DC full‐bridge converter with flat efficiency under wide PV module voltage and load range. IEEE Transactions on Industrial Electronics 2008; 55 (7): 2655 – 2663.en_US
dc.identifier.citedreferenceSu G‐J, Tang L. A multiphase, modular, bidirectional, triple‐voltage DC–DC converter for hybrid and fuel cell vehicle power systems. IEEE Transactions on Power Electronics 2008; 23 (6): 3035 – 3046.en_US
dc.identifier.citedreferenceSangtaek H, Divan D. Bi‐directional DC/DC converters for plug‐in hybrid electric vehicle (PHEV) applications. APEC 2008; 1: 784 – 789.en_US
dc.identifier.citedreferenceChiu H‐J, Lin L‐W. A bidirectional DC‐DC converter for fuel cell electric vehicle driving system. IEEE Transactions on Power Electronics 2006; 21 (4): 950 – 958.en_US
dc.identifier.citedreferenceInoue S, Akagi H. A bi‐directional isolated DC/DC converter as a core circuit of the next‐generation medium‐voltage power conversion system. IEEE Transactions on Power Electronics 2007; 22 (2): 535 – 542.en_US
dc.identifier.citedreferenceWu X, Xie X, Zhao C, Qian Z, Zhao R. Low voltage and current stress ZVZCS full bridge DC–DC converter using center tapped rectifier reset. IEEE Transactions on Industrial Electronics 2008; 55 (3): 1470 – 1477.en_US
dc.identifier.citedreferenceXiao H, Xie S. A ZVS bidirectional DC–DC converter with phase‐shift plus PWM control scheme. IEEE Transactions on Power Electronics 2008; 23 (2): 813 – 823.en_US
dc.identifier.citedreferenceSosa JL, Castilla M, Miret J, Garcia de Vicuna L, Matas J. Modeling and performance analysis of the DC/DC series—parallel resonant converter operating with discrete self‐sustained phase‐shift modulation technique. IEEE Transactions on Industrial Electronics 2009; 56 (3): 697 – 705.en_US
dc.identifier.citedreferenceOliveira AC, Jacobina CB, Lima AMN. Improved dead‐time compensation for sinusoidal PWM inverters operating at high switching frequencies. IEEE Transactions on Industrial Electronics 2007; 54 (4): 2295 – 2304.en_US
dc.identifier.citedreferenceBai H, Mi C, Gargies S. The short‐timescale transient processes in high‐voltage and high‐power isolated bidirectional DC‐DC converters. IEEE Transactions on Power Electronics 2008; 23 (6): 2648 – 2656.en_US
dc.identifier.citedreferenceBai H, Zhao Z, Mi C. Framework and research methodology of short‐timescale pulsed power phenomena in high voltage and high power converters. IEEE Transactions on Industrial Electronics 2009; 56 (3): 805 – 816.en_US
dc.identifier.citedreferenceBai H, Mi C, Wang C, Gargies S. The dynamic model and hybrid phase‐shift control of a bidirectional dual active bridge DC‐DC converter. IECON 2008; 1: 2840 – 2845.en_US
dc.identifier.citedreferenceMi C, Bai H, Wang C, Gargies S. The operation, design, and control of dual H‐bridge based isolated bidirectional DC‐DC converter. IET Power Electronics 2008; 1 (4): 507 – 517.en_US
dc.identifier.citedreferenceBai H, Mi C. Eliminate reactive power and increase system efficiency of isolated bidirectional dual‐active‐bridge DC–DC converters using novel dual‐phase‐shift control. IEEE Transactions on Power Electronics 2008; 23 (6): 2905 – 2914.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.