Show simple item record

Physical and functional interactions between Runx2 and HIF‐1α induce vascular endothelial growth factor gene expression

dc.contributor.authorKwon, Tae‐geonen_US
dc.contributor.authorZhao, Xiangen_US
dc.contributor.authorYang, Qianen_US
dc.contributor.authorLi, Yanen_US
dc.contributor.authorGe, Chunxien_US
dc.contributor.authorZhao, Guishengen_US
dc.contributor.authorFranceschi, Renny T.en_US
dc.date.accessioned2011-11-10T15:35:00Z
dc.date.available2013-02-01T20:26:15Zen_US
dc.date.issued2011-12en_US
dc.identifier.citationKwon, Tae‐geon ; Zhao, Xiang; Yang, Qian; Li, Yan; Ge, Chunxi; Zhao, Guisheng; Franceschi, Renny T. (2011). "Physical and functional interactions between Runx2 and HIFâ 1α induce vascular endothelial growth factor gene expression ." Journal of Cellular Biochemistry 112(12): 3582-3593. <http://hdl.handle.net/2027.42/86966>en_US
dc.identifier.issn0730-2312en_US
dc.identifier.issn1097-4644en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/86966
dc.description.abstractAngiogenesis and bone formation are intimately related processes. Hypoxia during early bone development stabilizes hypoxia‐inducible factor‐1α (HIF‐1α) and increases angiogenic signals including vascular endothelial growth factor (VEGF). Furthermore, stabilization of HIF‐1α by genetic or chemical means stimulates bone formation. On the other hand, deficiency of Runx2, a key osteogenic transcription factor, prevents vascular invasion of bone and VEGF expression. This study explores the possibility that HIF‐1α and Runx2 interact to activate angiogenic signals. Runx2 over‐expression in mesenchymal cells increased VEGF mRNA and protein under both normoxic and hypoxic conditions. In normoxia, Runx2 also dramatically increased HIF‐1α protein. In all cases, the Runx2 response was inhibited by siRNA‐mediated suppression of HIF‐1α and completely blocked by the HIF‐1α inhibitor, echinomycin. Similarly, treatment of preosteoblast cells with Runx2 siRNA reduced VEGF mRNA in normoxia or hypoxia. However, Runx2 is not essential for the HIF‐1α response since VEGF is induced by hypoxia even in Runx2‐null cells. Endogenous Runx2 and HIF‐1α were colocalized to the nuclei of MC3T3‐E1 preosteoblast cells. Moreover, HIF‐1α and Runx2 physically interact using sites within the Runx2 RUNT domain. Chromatin immunoprecipitation also provided evidence for colocalization of Runx2 and HIF‐1α on the VEGF promoter. In addition, Runx2 stimulated HIF‐1α‐dependent activation of an HRE‐luciferase reporter gene without requiring a separate Runx2‐binding enhancer. These studies indicate that Runx2 functions together with HIF‐1α to stimulate angiogenic gene expression in bone cells and may in part explain the known requirement for Runx2 in bone vascularization. J. Cell. Biochem. 112: 3582–3593, 2011. © 2011 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherOsteoblasten_US
dc.subject.otherVascularizationen_US
dc.subject.otherAngiogenesisen_US
dc.subject.otherTranscriptional Factorsen_US
dc.subject.otherHypoxiaen_US
dc.titlePhysical and functional interactions between Runx2 and HIF‐1α induce vascular endothelial growth factor gene expressionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Periodontics & Oral Medicine and Biological Chemistry, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 N. University Ave, Ann Arbor, MI 48109‐1078, USA.en_US
dc.contributor.affiliationotherDepartment of Oral & Maxillofacial Surgery, Kyungpook National University, Daegu, Republic of Koreaen_US
dc.identifier.pmid21793044en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86966/1/23289_ftp.pdf
dc.identifier.doi10.1002/jcb.23289en_US
dc.identifier.sourceJournal of Cellular Biochemistryen_US
dc.identifier.citedreferenceBae JS, Gutierrez S, Narla R, Pratap J, Devados R, van Wijnen AJ, Stein JL, Stein GS, Lian JB, Javed A. 2007. Reconstitution of Runx2/Cbfa1‐null cells identifies a requirement for BMP2 signaling through a Runx2 functional domain during osteoblast differentiation. J Cell Biochem 100: 434 – 449.en_US
dc.identifier.citedreferenceBronckers AL, Sasaguri K, Cavender AC, D'Souza RN, Engelse MA. 2005. Expression of Runx2/Cbfa1/Pebp2alphaA during angiogenesis in postnatal rodent and fetal human orofacial tissues. J Bone Miner Res 20: 428 – 437.en_US
dc.identifier.citedreferenceByon CH, Javed A, Dai Q, Kappes JC, Clemens TL, Darley‐Usmar VM, McDonald JM, Chen Y. 2008. Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor Runx2 by AKT signaling. J Biol Chem 283: 15319 – 15327.en_US
dc.identifier.citedreferenceDucy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. 1997. Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell 89: 747 – 754.en_US
dc.identifier.citedreferenceFirth JD, Ebert BL, Pugh CW, Ratcliffe PJ. 1994. Oxygen‐regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: Similarities with the erythropoietin 3′ enhancer. Proc Natl Acad Sci USA 91: 6496 – 6500.en_US
dc.identifier.citedreferenceForsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL. 1996. Activation of vascular endothelial growth factor gene transcription by hypoxia‐inducible factor 1. Mol Cell Biol 16: 4604 – 4613.en_US
dc.identifier.citedreferenceFukuda R, Hirota K, Fan F, Jung YD, Ellis LM, Semenza GL. 2002. Insulin‐like growth factor 1 induces hypoxia‐inducible factor 1‐mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3‐kinase signaling in colon cancer cells. J Biol Chem 277: 38205 – 38211.en_US
dc.identifier.citedreferenceHimeno M, Enomoto H, Liu W, Ishizeki K, Nomura S, Kitamura Y, Komori T. 2002. Impaired vascular invasion of Cbfa1‐deficient cartilage engrafted in the spleen. J Bone Miner Res 17: 1297 – 1305.en_US
dc.identifier.citedreferenceHirota K, Semenza GL. 2006. Regulation of angiogenesis by hypoxia‐inducible factor 1. Crit Rev Oncol Hematol 59: 15 – 26.en_US
dc.identifier.citedreferenceHofer T, Desbaillets I, Hopfl G, Gassmann M, Wenger RH. 2001. Dissecting hypoxia‐dependent and hypoxia‐independent steps in the HIF‐1alpha activation cascade: Implications for HIF‐1alpha gene therapy. FASEB J 15: 2715 – 2717.en_US
dc.identifier.citedreferenceHuang LE, Gu J, Schau M, Bunn HF. 1998. Regulation of hypoxia‐inducible factor 1alpha is mediated by an O2‐dependent degradation domain via the ubiquitin‐proteasome pathway. Proc Natl Acad Sci USA 95: 7987 – 7992.en_US
dc.identifier.citedreferenceJaved A, Barnes GL, Pratap J, Antkowiak T, Gerstenfeld LC, van Wijnen AJ, Stein JL, Lian JB, Stein GS. 2005. Impaired intranuclear trafficking of Runx2 (AML3/CBFA1) transcription factors in breast cancer cells inhibits osteolysis in vivo. Proc Natl Acad Sci USA 102: 1454 – 1459.en_US
dc.identifier.citedreferenceKazi AA, Koos RD. 2007. Estrogen‐induced activation of hypoxia‐inducible factor‐1alpha, vascular endothelial growth factor expression, and edema in the uterus are mediated by the phosphatidylinositol 3‐kinase/Akt pathway. Endocrinology 148: 2363 – 2374.en_US
dc.identifier.citedreferenceKim IS, Otto F, Zabel B, Mundlos S. 1999. Regulation of chondrocyte differentiation by Cbfa1. Mech Dev 80: 159 – 170.en_US
dc.identifier.citedreferenceKomori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T. 1997. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89: 755 – 764.en_US
dc.identifier.citedreferenceKong D, Park EJ, Stephen AG, Calvani M, Cardellina JH, Monks A, Fisher RJ, Shoemaker RH, Melillo G. 2005. Echinomycin, a small‐molecule inhibitor of hypoxia‐inducible factor‐1 DNA‐binding activity. Cancer Res 65: 9047 – 9055.en_US
dc.identifier.citedreferenceLi Y, Ge C, Franceschi RT. 2010. Differentiation‐dependent association of phosphorylated extracellular signal‐regulated kinase with the chromatin of osteoblast‐related genes. J Bone Miner Res 25: 154 – 163.en_US
dc.identifier.citedreferenceLin L, Shen Q, Leng H, Duan X, Fu X, Yu C. 2011. Synergistic inhibition of endochondral bone formation by silencing Hif1alpha and Runx2 in trauma‐induced heterotopic ossification. Mol Ther 19: 1426 – 1432.en_US
dc.identifier.citedreferenceManalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Ye SQ, Garcia JG, Semenza GL. 2005. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF‐1. Blood 105: 659 – 669.en_US
dc.identifier.citedreferenceMaxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ. 1999. The tumour suppressor protein VHL targets hypoxia‐inducible factors for oxygen‐dependent proteolysis. Nature 399: 271 – 275.en_US
dc.identifier.citedreferenceNamba K, Abe M, Saito S, Satake M, Ohmoto T, Watanabe T, Sato Y. 2000. Indispensable role of the transcription factor PEBP2/CBF in angiogenic activity of a murine endothelial cell MSS31. Oncogene 19: 106 – 114.en_US
dc.identifier.citedreferenceOosthuyse B, Moons L, Storkebaum E, Beck H, Nuyens D, Brusselmans K, Van Dorpe J, Hellings P, Gorselink M, Heymans S, Theilmeier G, Dewerchin M, Laudenbach V, Vermylen P, Raat H, Acker T, Vleminckx V, Van Den Bosch L, Cashman N, Fujisawa H, Drost MR, Sciot R, Bruyninckx F, Hicklin DJ, Ince C, Gressens P, Lupu F, Plate KH, Robberecht W, Herbert JM, Collen D, Carmeliet P. 2001. Deletion of the hypoxia‐response element in the vascular endothelial growth factor promoter causes motor neuron degeneration [see comment]. Nat Genet 28: 131 – 138.en_US
dc.identifier.citedreferenceOtto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ. 1997. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89: 765 – 771.en_US
dc.identifier.citedreferencePeng Z, Wei D, Wang L, Tang H, Zhang J, Le X, Jia Z, Li Q, Xie K. 2006. RUNX3 inhibits the expression of vascular endothelial growth factor and reduces the angiogenesis, growth, and metastasis of human gastric cancer. Clin Cancer Res 12: 6386 – 6394.en_US
dc.identifier.citedreferencePeng ZG, Zhou MY, Huang Y, Qiu JH, Wang LS, Liao SH, Dong S, Chen GQ. 2008. Physical and functional interaction of Runt‐related protein 1 with hypoxia‐inducible factor‐1alpha. Oncogene 27: 839 – 847.en_US
dc.identifier.citedreferenceProvot S, Zinyk D, Gunes Y, Kathri R, Le Q, Kronenberg HM, Johnson RS, Longaker MT, Giaccia AJ, Schipani E. 2007. Hif‐1alpha regulates differentiation of limb bud mesenchyme and joint development. J Cell Biol 177: 451 – 464.en_US
dc.identifier.citedreferenceQiao M, Shapiro P, Kumar R, Passaniti A. 2004. Insulin‐like growth factor‐1 regulates endogenous RUNX2 activity in endothelial cells through a phosphatidylinositol 3‐kinase/ERK‐dependent and Akt‐independent signaling pathway. J Biol Chem 279: 42709 – 42718.en_US
dc.identifier.citedreferenceQiao M, Shapiro P, Fosbrink M, Rus H, Kumar R, Passaniti A. 2006. Cell cycle‐dependent phosphorylation of the RUNX2 transcription factor by cdc2 regulates endothelial cell proliferation. J Biol Chem 281: 7118 – 7128.en_US
dc.identifier.citedreferenceRoca H, Franceschi RT. 2008. Analysis of transcription factor interactions in osteoblasts using competitive chromatin immunoprecipitation. Nucleic Acids Res 36: 1723 – 1730.en_US
dc.identifier.citedreferenceRoca H, Phimphilai M, Gopalakrishnan R, Xiao G, Franceschi RT. 2005. Cooperative interactions between RUNX2 and homeodomain protein‐binding sites are critical for the osteoblast‐specific expression of the bone sialoprotein gene. J Biol Chem 280: 30845 – 30855.en_US
dc.identifier.citedreferenceSalceda S, Caro J. 1997. Hypoxia‐inducible factor 1alpha (HIF‐1alpha) protein is rapidly degraded by the ubiquitin‐proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox‐induced changes. J Biol Chem 272: 22642 – 22647.en_US
dc.identifier.citedreferenceSchaffer L, Scheid A, Spielmann P, Breymann C, Zimmermann R, Meuli M, Gassmann M, Marti HH, Wenger RH. 2003. Oxygen‐regulated expression of TGF‐beta 3, a growth factor involved in trophoblast differentiation. Placenta 24: 941 – 950.en_US
dc.identifier.citedreferenceSchipani E, Ryan HE, Didrickson S, Kobayashi T, Knight M, Johnson RS. 2001. Hypoxia in cartilage: HIF‐1alpha is essential for chondrocyte growth arrest and survival. Genes Dev 15: 2865 – 2876.en_US
dc.identifier.citedreferenceSemenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P, Giallongo A. 1996. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia‐inducible factor 1. J Biol Chem 271: 32529 – 32537.en_US
dc.identifier.citedreferenceSluimer JC, Daemen MJ. 2009. Novel concepts in atherogenesis: Angiogenesis and hypoxia in atherosclerosis. J Pathol 218: 7 – 29.en_US
dc.identifier.citedreferenceSodhi A, Montaner S, Miyazaki H, Gutkind JS. 2001. MAPK and Akt act cooperatively but independently on hypoxia inducible factor‐1alpha in rasV12 upregulation of VEGF. Biochem Biophys Res Comm 287: 292 – 300.en_US
dc.identifier.citedreferenceSun L, Vitolo M, Passaniti A. 2001. Runt‐related gene 2 in endothelial cells: Inducible expression and specific regulation of cell migration and invasion. Cancer Res 61: 4994 – 5001.en_US
dc.identifier.citedreferenceThirunavukkarasu K, Mahajan M, McLarren KW, Stifani S, Karsenty G. 1998. Two domains unique to osteoblast‐specific transcription factor Osf2/Cbfa1 contribute to its transactivation function and its inability to heterodimerize with Cbfbeta. Mol Cell Biol 18: 4197 – 4208.en_US
dc.identifier.citedreferenceTowler DA. 2007. Vascular biology and bone formation: Hints from HIF [comment]. J Clin Invest 117: 1477 – 1480.en_US
dc.identifier.citedreferenceVlaminck B, Toffoli S, Ghislain B, Demazy C, Raes M, Michiels C. 2007. Dual effect of echinomycin on hypoxia‐inducible factor‐1 activity under normoxic and hypoxic conditions. FEBS J 274: 5533 – 5542.en_US
dc.identifier.citedreferenceWang D, Christensen K, Chawla K, Xiao G, Krebsbach PH, Franceschi RT. 1999. Isolation and characterization of MC3T3‐E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J Bone Miner Res 14: 893 – 903.en_US
dc.identifier.citedreferenceWang Y, Wan C, Deng L, Liu X, Cao X, Gilbert SR, Bouxsein ML, Faugere MC, Guldberg RE, Gerstenfeld LC, Haase VH, Johnson RS, Schipani E, Clemens TL. 2007. The hypoxia‐inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest 117: 1616 – 1626.en_US
dc.identifier.citedreferenceXiao G, Cui Y, Ducy P, Karsenty G, Franceschi RT. 1997. Ascorbic acid‐dependent activation of the osteocalcin promoter in MC3T3‐E1 preosteoblasts: Requirement for collagen matrix synthesis and the presence of an intact OSE2 sequence. Mol Endocrinol 11: 1103 – 1113.en_US
dc.identifier.citedreferenceYang S, Wei D, Wang D, Phimphilai M, Krebsbach PH, Franceschi RT. 2003. In vitro and in vivo synergistic interactions between the Runx2/Cbfa1 transcription factor and bone morphogenetic protein‐2 in stimulating osteoblast differentiation. J Bone Miner Res 18: 705 – 715.en_US
dc.identifier.citedreferenceZelzer E, Glotzer DJ, Hartmann C, Thomas D, Fukai N, Soker S, Olsen BR. 2001. Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2. Mech Dev 106: 97 – 106.en_US
dc.identifier.citedreferenceZhao Z, Zhao M, Xiao G, Franceschi RT. 2005. Gene transfer of the Runx2 transcription factor enhances osteogenic activity of bone marrow stromal cells in vitro and in vivo. Mol Ther 12: 247 – 253.en_US
dc.identifier.citedreferenceZheng Q, Sebald E, Zhou G, Chen Y, Wilcox W, Lee B, Krakow D. 2005. Dysregulation of chondrogenesis in human cleidocranial dysplasia. Am J Hum Genet 77: 305 – 312.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.