Show simple item record

Microdialysis and mass spectrometric monitoring of dopamine and enkephalins in the globus pallidus reveal reciprocal interactions that regulate movement

dc.contributor.authorMabrouk, Omar S.en_US
dc.contributor.authorLi, Qiangen_US
dc.contributor.authorSong, Pengen_US
dc.contributor.authorKennedy, Robert T.en_US
dc.date.accessioned2011-11-10T15:35:16Z
dc.date.available2012-09-04T15:27:43Zen_US
dc.date.issued2011-07en_US
dc.identifier.citationMabrouk, Omar S.; Li, Qiang; Song, Peng; Kennedy, Robert T. (2011). "Microdialysis and mass spectrometric monitoring of dopamine and enkephalins in the globus pallidus reveal reciprocal interactions that regulate movement." Journal of Neurochemistry 118(1). <http://hdl.handle.net/2027.42/86977>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/86977
dc.description.abstractPallidal dopamine, GABA and the endogenous opioid peptides enkephalins have independently been shown to be important controllers of sensorimotor processes. Using in vivo microdialysis coupled to liquid chromatography–mass spectrometry and a behavioral assay, we explored the interaction between these three neurotransmitters in the rat globus pallidus. Amphetamine (3 mg/kg i.p.) evoked an increase in dopamine, GABA and methionine/leucine enkephalin. Local perfusion of the dopamine D 1 receptor antagonist SCH 23390 (100 μM) fully prevented amphetamine stimulated enkephalin and GABA release in the globus pallidus and greatly suppressed hyperlocomotion. In contrast, the dopamine D 2 receptor antagonist raclopride (100 μM) had only minimal effects suggesting a greater role for pallidal D 1 over D 2 receptors in the regulation of movement. Under basal conditions, opioid receptor blockade by naloxone perfusion (10 μM) in the globus pallidus stimulated GABA and inhibited dopamine release. Amphetamine‐stimulated dopamine release and locomotor activation were attenuated by naloxone perfusion with no effect on GABA. These findings demonstrate a functional relationship between pallidal dopamine, GABA and enkephalin systems in the control of locomotor behavior under basal and stimulated conditions. Moreover, these findings demonstrate the usefulness of liquid chromatography–mass spectrometry as an analytical tool when coupled to in vivo microdialysis.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherAmphetamineen_US
dc.subject.otherDopamineen_US
dc.subject.otherEnkephalinsen_US
dc.subject.otherGlobus Pallidusen_US
dc.subject.otherMass Spectrometryen_US
dc.subject.otherMicrodialysisen_US
dc.titleMicrodialysis and mass spectrometric monitoring of dopamine and enkephalins in the globus pallidus reveal reciprocal interactions that regulate movementen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationumDepartment of Pharmacology, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86977/1/j.1471-4159.2011.07293.x.pdf
dc.identifier.doi10.1111/j.1471-4159.2011.07293.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAlesdatter J. E. and Kalivas P. W. ( 1993 ) Inhibition of mu opioid‐induced motor activity in the ventral pallidum by D 1 receptor blockade. Behav. Pharmacol. 4, 645 – 651.en_US
dc.identifier.citedreferenceAlexander G. E., DeLong M. R. and Strick P. L. ( 1986 ) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357 – 381.en_US
dc.identifier.citedreferenceAnagnostakis Y., Krikos Y. and Spyraki C. ( 1992 ) Pallidal substrate of morphine‐induced locomotion. Eur. Neuropsychopharmacol. 2, 65 – 72.en_US
dc.identifier.citedreferenceAvdelidis D. and Spyraki C. ( 1986 ) Dopamine dependent behaviours in rats with bilateral ibotenic acid‐induced lesions of the globus pallidus. Brain Res. Bull. 16, 25 – 32.en_US
dc.identifier.citedreferenceBaamonde A., Daugé V., Ruiz‐Gayo M., Fulga I. G., Turcaud S., Fournié‐Zaluski M. C. and Roques B. P. ( 1992 ) Antidepressant‐type effects of endogenous enkephalins protected by systemic RB 101 are mediated by opioid delta and dopamine D 1 receptor stimulation. Eur. J. Pharmacol. 216, 157 – 166.en_US
dc.identifier.citedreferenceBarone P., Tucci I., Parashos S. A. and Chase T. N. ( 1987 ) D‐1 dopamine receptor changes after striatal quinolinic acid lesion. Eur. J. Pharmacol. 138, 141 – 145.en_US
dc.identifier.citedreferenceBartlett L. E. and Mendez I. ( 2005 ) Dopaminergic reinnervation of the globus pallidus by fetal nigral grafts in the rodent model of Parkinson’s disease. Cell Transplant. 14, 119 – 127.en_US
dc.identifier.citedreferenceBergson C., Mrzljak L., Smiley J. F., Pappy M., Levenson R. and Goldman‐Rakic P. S. ( 1995 ) Regional, cellular, and subcellular variations in the distribution of D 1 and D 5 dopamine receptors in primate brain. J. Neurosci. 15, 7821 – 7836.en_US
dc.identifier.citedreferenceBouali‐Benazzouz R., Tai C. H., Chetrit J. and Benazzouz A. ( 2009 ) Intrapallidal injection of 6‐hydroxydopamine induced changes in dopamine innervation and neuronal activity of globus pallidus. Neuroscience 164, 588 – 596.en_US
dc.identifier.citedreferenceCameron D. L. and Williams J. T. ( 1993 ) Dopamine D 1 receptors facilitate transmitter release. Nature 366, 344 – 347.en_US
dc.identifier.citedreferenceCarlson J. H., Bergstrom D. A. and Walters J. R. ( 1986 ) Neurophysiological evidence that D‐1 dopamine receptor blockade attenuates postsynaptic but not autoreceptor‐mediated effects of dopamine agonists. Eur. J. Pharmacol. 123, 237 – 251.en_US
dc.identifier.citedreferenceCostall B., Naylor R. J. and Olley J. E. ( 1972 ) Catalepsy and circling behaviour after intracerebral injections of neuroleptic, cholinergic and anticholinergic agents into the caudate‐putamen, globus pallidus and substantia nigra of rat brain. Neuropharmacology 11, 645 – 663.en_US
dc.identifier.citedreferenceCuello A. C. and Paxinos G. ( 1978 ) Evidence for a long Leu‐enkephalin striopallidal pathway in rat brain. Nature 271, 178 – 180.en_US
dc.identifier.citedreferenceDewar D., Jenner P. and Marsden C. D. ( 1985 ) Behavioural effects in rats of unilateral and bilateral injections of opiate receptor agonists into the globus pallidus. Neuroscience 15, 41 – 46.en_US
dc.identifier.citedreferenceDi Chiara G. and Imperato A. ( 1998 ) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl Acad. Sci. USA 85, 5274 – 5278.en_US
dc.identifier.citedreferenceDubois A., Savasta M., Curet O. and Scatton B. ( 1986 ) Autoradiographic distribution of the D 1 agonist [3H]SKF 38393, in the rat brain and spinal cord. Comparison with the distribution of D 2 dopamine receptors. Neuroscience 19, 125 – 137.en_US
dc.identifier.citedreferenceDurieux P. F., Bearzatto B., Guiducci S., Buch T., Waisman A., Zoli M., Schiffmann S. N. and de Kerchove d’Exaerde A. ( 2009 ) D 2 R striatopallidal neurons inhibit both locomotor and drug reward processes. Nat. Neurosci. 12, 393 – 395.en_US
dc.identifier.citedreferenceFilion M., Tremblay L. and Bédard P. J. ( 1991 ) Effects of dopamine agonists on the spontaneous activity of globus pallidus neurons in monkeys with MPTP‐induced Parkinsonism. Brain Res. 547, 152 – 161.en_US
dc.identifier.citedreferenceFloran B., Aceves J., Sierra A. and Martinez‐Fong D. ( 1990 ) Activation of D 1 dopamine receptors stimulates the release of GABA in the basal ganglia of the rat. Neurosci. Lett. 116, 136 – 140.en_US
dc.identifier.citedreferenceFloran B., Floran L., Sierra A. and Aceves J. ( 1997 ) D 2 receptor‐mediated inhibition of GABA release by endogenous dopamine in the rat globus pallidus. Neurosci. Lett. 237, 1 – 4.en_US
dc.identifier.citedreferenceFuchs H. and Hauber W. ( 2004 ) Dopaminergic innervation of the rat globus pallidus characterized by microdialysis and immunohistochemistry. Exp. Brain Res. 154, 66 – 75.en_US
dc.identifier.citedreferenceFuchs H., Nagel J. and Hauber W. ( 2005 ) Effects of physiological and pharmacological stimuli on dopamine release in the rat globus pallidus. Neurochem. Int. 47, 474 – 481.en_US
dc.identifier.citedreferenceGalvan A., Floran B., Erlij D. and Aceves J. ( 2001 ) Intrapallidal dopamine restores motor deficits induced by 6‐hydroxydopamine in the rat. J. Neural. Transm. 108, 153 – 166.en_US
dc.identifier.citedreferenceGasca‐Martinez D., Hernandez A., Sierra A., Valdiosera R., Anaya‐Martinez V., Floran B., Erlij D. and Aceves J. ( 2010 ) Dopamine inhibits GABA transmission from the globus pallidus to the thalamic reticular nucleus via presynaptic D4 receptors. Neuroscience 169, 1672 – 1681.en_US
dc.identifier.citedreferenceHauber W., Lutz S. and Münkle M. ( 1998 ) The effects of globus pallidus lesions on dopamine‐dependent motor behaviour in rats. Neuroscience 86, 147 – 157.en_US
dc.identifier.citedreferenceHauber W. and Lutz S. ( 1999 ) Dopamine D 1 or D 2 receptor blockade in the globus pallidus produces akinesia in the rat. Behav. Brain Res. 106, 143 – 150.en_US
dc.identifier.citedreferenceHauber W. and Fuchs H. ( 2000 ) Dopamine release in the rat globus pallidus characterised by in vivo microdialysis. Behav. Brain Res. 111, 39 – 44.en_US
dc.identifier.citedreferenceHooks M. S., Jones D. N., Justice J. B., Jr and Holtzman S. G. ( 1992 ) Naloxone reduces amphetamine‐induced stimulation of locomotor activity and in vivo dopamine release in the striatum and nucleus accumbens. Pharmacol. Biochem. Behav. 42, 765 – 770.en_US
dc.identifier.citedreferenceHurley M. J., Mash D. C. and Jenner P. ( 2001 ) Dopamine D(1) receptor expression in human basal ganglia and changes in Parkinson’s disease. Brain Res. Mol. Brain Res. 87, 271 – 279.en_US
dc.identifier.citedreferenceJoyce E. M., Koob G. F., Strecker R., Iversen S. D. and Bloom F. E. ( 1981 ) The behavioural effects of enkephalin analogues injected into the ventral tegmental area and globus pallidus. Brain Res. 221, 359 – 370.en_US
dc.identifier.citedreferenceJutkiewicz E. M., Torregrossa M. M., Sobczyk‐Kojiro K., Mosberg H. I., Folk J. E., Rice K. C., Watson S. J. and Woods J. H. ( 2006 ) Behavioral and neurobiological effects of the enkephalinase inhibitor RB101 relative to its antidepressant effects. Eur. J. Pharmacol. 531, 151 – 159.en_US
dc.identifier.citedreferenceKebabian J. W. and Calne D. B. ( 1979 ) Multiple receptors for dopamine. Nature 277, 93 – 96 (review).en_US
dc.identifier.citedreferenceKita H. and Kitai S. T. ( 1988 ) Glutamate decarboxylase immunoreactive neurons in rat neostriatum: their morphological types and populations. Brain Res. 447, 346 – 352.en_US
dc.identifier.citedreferenceKönig M., Zimmer A. M., Steiner H., Holmes P. V., Crawley J. N., Brownstein M. J. and Zimmer A. ( 1996 ) Pain responses, anxiety and aggression in mice deficient in pre‐proenkephalin. Nature 383, 535 – 538.en_US
dc.identifier.citedreferenceLi Q., Zubieta J. K. and Kennedy R. T. ( 2009 ) Practical aspects of in vivo detection of neuropeptides by microdialysis coupled off‐line to capillary LC with multistage MS. Anal. Chem. 81, 2242 – 2250.en_US
dc.identifier.citedreferenceLindvall O. and Björklund A. ( 1979 ) Dopaminergic innervation of the globus pallidus by collaterals from the nigrostriatal pathway. Brain Res. 172, 169 – 173.en_US
dc.identifier.citedreferenceLudwig M. and Leng G. ( 2006 ) Dendritic peptide release and peptide‐dependent behaviours. Nat. Rev. Neurosci. 7, 126 – 136 (review).en_US
dc.identifier.citedreferenceMabrouk O. S., Volta M., Marti M. and Morari M. ( 2008 ) Stimulation of delta opioid receptors located in substantia nigra reticulata but not globus pallidus or striatum restores motor activity in 6‐hydroxydopamine lesioned rats: new insights into the role of delta receptors in Parkinsonism. J. Neurochem. 107, 1647 – 1659.en_US
dc.identifier.citedreferenceManeuf Y. P., Mitchell I. J., Crossman A. R. and Brotchie J. M. ( 1994 ) On the role of enkephalin cotransmission in the GABAergic striatal efferents to the globus pallidus. Exp. Neurol. 125, 65 – 71.en_US
dc.identifier.citedreferenceMansour A., Meador‐Woodruff J. H., Bunzow J. R., Civelli O., Akil H. and Watson S. J. ( 1990 ) Localization of dopamine D 2 receptor mRNA and D 1 and D 2 receptor binding in the rat brain and pituitary: an in situ hybridization‐receptor autoradiographic analysis. J. Neurosci. 10, 2587 – 2600.en_US
dc.identifier.citedreferenceMarshall J. F., Henry B. L., Billings L. M. and Hoover B. R. ( 2001 ) The role of the globus pallidus D 2 subfamily of dopamine receptors in pallidal immediate early gene expression. Neuroscience 105, 365 – 378.en_US
dc.identifier.citedreferenceMichael‐Titus A., Preterre P., Giros B and Costentin J. ( 1987 ) Role of endogenous enkephalins in locomotion evidenced by acetorphan, an “enkephalinase” inhibitor. J. Pharmacol. Exp. Ther. 243, 1062 – 1066.en_US
dc.identifier.citedreferenceOlive M. F., Anton B., Micevych P., Evans C. J. and Maidment N. T. ( 1997 ) Presynaptic versus postsynaptic localization of mu and delta opioid receptors in dorsal and ventral striatopallidal pathways. J. Neurosci. 17, 7471 – 7479.en_US
dc.identifier.citedreferenceOssowska K., Wedzony K. and Wolfarth S. ( 1984 ) The role of the GABA mechanisms of the globus pallidus in mediating catalepsy, stereotypy and locomotor activity. Pharmacol. Biochem. Behav. 21, 825 – 831.en_US
dc.identifier.citedreferenceParent A. and Hazrati L. N. ( 1995a ) Functional anatomy of the basal ganglia. I. The cortico‐basal ganglia‐thalamo‐cortical loop. Brain Res. Brain Res. Rev. 20, 91 – 127.en_US
dc.identifier.citedreferenceParent A. and Hazrati L. N. ( 1995b ) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res. Brain Res. Rev. 20, 128 – 154.en_US
dc.identifier.citedreferencePaxinos G. and Watson C. ( 2007 ) The Rat Brain in Stereotaxic Coordinates, 6th edn. Academic Press, Amsterdam.en_US
dc.identifier.citedreferenceSchad C. A., Justice J. B., Jr and Holtzman S. G. ( 1995 ) Naloxone reduces the neurochemical and behavioral effects of amphetamine but not those of cocaine. Eur. J. Pharmacol. 275, 9 – 16.en_US
dc.identifier.citedreferenceShin R. M., Masuda M., Miura M., Sano H., Shirasawa T., Song W. J., Kobayashi K. and Aosaki T. ( 2003 ) Dopamine D 4 receptor‐induced postsynaptic inhibition of GABAergic currents in mouse globus pallidus neurons. J. Neurosci. 23, 11662 – 11672.en_US
dc.identifier.citedreferenceStanford I. M. and Cooper A. J. ( 1999 ) Presynaptic mu and delta opioid receptor modulation of GABAA IPSCs in the rat globus pallidus in vitro. J. Neurosci. 19, 4796 – 4803.en_US
dc.identifier.citedreferenceWalters J. R., Bergstrom D. A., Carlson J. H., Chase T. N. and Braun A. R. ( 1987 ) D 1 dopamine receptor activation required for postsynaptic expression of D 2 agonist effects. Science 236, 719 – 722.en_US
dc.identifier.citedreferenceWang J. Q. and McGinty J. F. ( 1996 ) D 1 and D 2 receptor regulation of preproenkephalin and preprodynorphin mRNA in rat striatum following acute injection of amphetamine or methamphetamine. Synapse 22, 114 – 122.en_US
dc.identifier.citedreferenceYung K. K., Bolam J. P., Smith A. D., Hersch S. M., Ciliax B. J. and Levey A. I. ( 1995 ) Immunocytochemical localization of D 1 and D 2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience 65, 709 – 730.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.