Show simple item record

Responses of soil cellulolytic fungal communities to elevated atmospheric CO 2 are complex and variable across five ecosystems

dc.contributor.authorWeber, Carolyn F.en_US
dc.contributor.authorZak, Donald R.en_US
dc.contributor.authorHungate, Bruce A.en_US
dc.contributor.authorJackson, Robert B.en_US
dc.contributor.authorVilgalys, Rytasen_US
dc.contributor.authorEvans, R. Daviden_US
dc.contributor.authorSchadt, Christopher W.en_US
dc.contributor.authorMegonigal, J. Patricken_US
dc.contributor.authorKuske, Cheryl R.en_US
dc.date.accessioned2011-11-10T15:35:18Z
dc.date.available2012-12-03T21:17:30Zen_US
dc.date.issued2011-10en_US
dc.identifier.citationWeber, Carolyn F.; Zak, Donald R.; Hungate, Bruce A.; Jackson, Robert B.; Vilgalys, Rytas; Evans, R. David; Schadt, Christopher W.; Megonigal, J. Patrick; Kuske, Cheryl R. (2011). "Responses of soil cellulolytic fungal communities to elevated atmospheric CO 2 are complex and variable across five ecosystems." Environmental Microbiology 13(10). <http://hdl.handle.net/2027.42/86979>en_US
dc.identifier.issn1462-2912en_US
dc.identifier.issn1462-2920en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/86979
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleResponses of soil cellulolytic fungal communities to elevated atmospheric CO 2 are complex and variable across five ecosystemsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherBioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USAen_US
dc.contributor.affiliationotherSchool of Natural Resources & Environmenten_US
dc.contributor.affiliationotherDepartment of Biological Sciencesen_US
dc.contributor.affiliationotherMerriam‐Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USAen_US
dc.contributor.affiliationotherDepartment of Biologyen_US
dc.contributor.affiliationotherNicholas School of the Environment, Duke University, Durham, NC, 27708, USAen_US
dc.contributor.affiliationotherSchool of Biological Sciences, Washington State University, Pullman, WA 99164, USAen_US
dc.contributor.affiliationotherBiosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USAen_US
dc.contributor.affiliationotherSmithsonian Environmental Research Center, Washington, DC 20013, USAen_US
dc.identifier.pmid21883796en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86979/1/j.1462-2920.2011.02548.x.pdf
dc.identifier.doi10.1111/j.1462-2920.2011.02548.xen_US
dc.identifier.sourceEnvironmental Microbiologyen_US
dc.identifier.citedreferenceAndrew, C., and Lilleskov, E.A. ( 2009 ) Productivity and community structure of ectomycorrhizal fungal sporocarps under increased atmospheric CO 2 and O 3. Ecol Lett 12: 812 – 822.en_US
dc.identifier.citedreferenceBelnap, J., Budel, B., and Lange, O.L. ( 2001 ) Biological soil crusts: characteristics and distribution In Ecological studies, 150. Biological soil crusts: structure, function and management. Berlin, Germany: Springer‐Verlag.en_US
dc.identifier.citedreferenceBirney, E., Clamp, M., and Durbin, R. ( 2004 ) GeneWise and Genomewise. Genome Res 14: 988 – 995.en_US
dc.identifier.citedreferencede Boer, W., Folman, L.B., Summerbell, R.C., and Boddy, L. ( 2005 ) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29: 795 – 811.en_US
dc.identifier.citedreferenceBrown, A.L.P., Day, F.P., Hungate, B.A., Drake, B.G., and Hinkle, C.R. ( 2007 ) Root biomass and nutrient dynamics in a scrub‐oak ecosystem under the influence of elevated atmospheric CO 2. Plant Soil 292: 219 – 232.en_US
dc.identifier.citedreferenceCarney, K.M., Hungate, B.A., Drake, B.G., and Megonigal, J.P. ( 2007 ) Altered soil microbial community at elevated CO 2 leads to loss of soil carbon. Proc Natl Acad Sci USA 104: 4990 – 4995.en_US
dc.identifier.citedreferenceCastro, H.F., Classen, A.T., Austin, E.E., Norby, R.J., and Schadt, C.W. ( 2010 ) Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol 76: 999 – 1007.en_US
dc.identifier.citedreferenceChung, H., Zak, D.R., and Lilleskov, E.A. ( 2006 ) Fungal community composition and metabolism under elevated CO 2 and O 3. Oecologia 147: 143 – 154.en_US
dc.identifier.citedreferenceCouteaux, M.‐M., Bottner, P., and Berg, B. ( 1995 ) Litter decomposition, climate and litter quality. Trends Ecol Evol 10: 63 – 66.en_US
dc.identifier.citedreferenceCurtis, P.S., Drake, B.G., Leadley, P.W., Arp, W.J., and Whigham, D.F. ( 1989 ) Growth and senescence in plant communities exposed to elevated CO 2 concentrations on an marsh. Oecologia 78: 20 – 26.en_US
dc.identifier.citedreferenceDhillion, S.S., Roy, J., and Abrams, M. ( 1996 ) Assessing the impact of elevated CO 2 on soil microbial activities in a Mediterranean model ecosystem. Plant Soil 187: 333 – 342.en_US
dc.identifier.citedreferenceDijkstra, P., Hymus, G., Colavito, D., Vieglais, D.A., Cundari, C.M., Johnson, D.P., et al. ( 2002 ) Elevated atmospheric CO 2 stimulates aboveground biomass in a fire‐regenerated scrub‐oak ecosystem. Glob Change Biol 8: 90 – 103.en_US
dc.identifier.citedreferenceEdwards, I.P., and Zak, D.R. ( 2011 ) Fungal community composition and function after long‐term exposure of northern forests to elevated atmospheric CO 2 and tropospheric O 3. Glob Change Biol 17: 2184 – 2195.en_US
dc.identifier.citedreferenceEdwards, I.P., Upchurch, R.A., and Zak, D.R. ( 2008 ) Isolation of fungal cellobiohydrolase I genes from sporocarps and forest soils by PCR. Appl Environ Microbiol 74: 3481 – 3489.en_US
dc.identifier.citedreferenceEntry, J.A., Rose, C.L., and Cromack, K., Jr ( 1991 ) Litter decomposition and nutrient release in ectomycorrhizal mat soils of a Douglas fir ecosystem. Soil Biol Biochem 23: 285 – 290.en_US
dc.identifier.citedreferenceGarcia, M.O., Ovasapyan, T., Greas, M., and Treseder, K. ( 2008 ) Mycorrhizal dynamics under elevated CO 2 and nitrogen fertilization in a warm temperate forest. Plant Soil 303: 301 – 310.en_US
dc.identifier.citedreferenceHall, M.C., Stiling, P., Hungate, B.A., Drake, B.G., and Hunter, M.D. ( 2005 ) Effects of elevated CO 2 and herbivore damage on litter quality in a scrub oak ecosystem. J Chem Ecol 31: 2343 – 2356.en_US
dc.identifier.citedreferenceHamerlynck, E.P., Huxman, T.E., Nowak, R.S., Redar, S., Loik, M.E., Jordan, D.N., et al. ( 2000 ) Photosynthetic responses of Larrea tridentata to a step‐increase in atmospheric CO 2 at the Nevada Desert FACE Facility. J Arid Environ 44: 425 – 436.en_US
dc.identifier.citedreferenceHungate, B.A., Holland, E.A., Jackson, R.B., Chapin, F.S., III, Mooney, H.A., and Field, C.B. ( 1997 ) The fate of carbon in grasslands under carbon dioxide enrichment. Lett Nat 388: 576 – 579.en_US
dc.identifier.citedreferenceInsam, H., Baath, E., Frostegard, A., Gerzabek, M.H., Kraft, A., Schinner, F., et al. ( 1999 ) Responses of the soil microbiota to elevated CO 2 in an artificial tropical ecosystem. J Microbiol Methods 36: 45 – 54.en_US
dc.identifier.citedreferenceJin, V.L., and Evans, R.D. ( 2007 ) Elevated CO 2 increased microbial carbon substrate use and nitrogen cycling in Mojave Desert soils. Glob Change Biol 13: 452 – 465.en_US
dc.identifier.citedreferenceJin, V.L., and Evans, R.D. ( 2010 ) Microbial 13 C utilization patterns via stable isotope probing of phospholipid biomarkers in Mojave Desert soils exposed to ambient and elevated atmospheric CO 2. Glob Change Biol 16: 2334 – 2344.en_US
dc.identifier.citedreferenceKampichler, C., Kandeler, E., Bardgett, R.D., Jones, T.H., and Thompson, L.J. ( 1998 ) Impact of elevated atmospheric CO 2 concentration on soil microbial biomass and activity in a complex, weedy field model ecosystem. Glob Change Biol 4: 335 – 346.en_US
dc.identifier.citedreferenceKelley, A.M., Fay, P.A., Polley, H.W., Gill, R.A., and Jackson, R.B. ( 2011 ) Altered soil extracellular enzyme activity with changing atmospheric CO 2: results from a meta‐analysis and unique CO 2 field gradient. Ecosphere in press.en_US
dc.identifier.citedreferenceKlironomos, J.N., Rillig, M.C., Allen, M.F., Zak, D.R., Kubiske, M., and Pregitzer, K.S. ( 1997 ) Soil fungal‐arthropod responses to Populus tremuloides grown under elevated atmospheric CO 2 under field conditions. Glob Change Biol 3: 473 – 478.en_US
dc.identifier.citedreferenceKluber, L.A., Tinnesand, K.M., Caldwell, B.A., Dunham, S.M., Yarwood, R.R., Bottomley, P.J., and Myrold, D.D. ( 2010 ) Ectomycorrhizal mats alter forest soil biogeochemistry. Soil Biol Biochem 42: 1607 – 1613.en_US
dc.identifier.citedreferenceKubicek, C.P., Seidl, V., and Seiboth, B. ( 2010 ) Plant cell wall and chitin degradation. In Cellulose and Molecular Biology of Filamentous Fungi. Borkovish, K.A., and Ebbole, D.J. (eds). Washington, DC, USA: ASM Press, pp. 396 – 413.en_US
dc.identifier.citedreferenceLangley, J.A., Drake, B.G., Dijkstra, P., and Hungate, B.A. ( 2003 ) Ectomycorrhizal colonization, biomass and production in a regenerating scrub oak forest in response to elevated CO 2. Ecosystems 5: 424 – 430.en_US
dc.identifier.citedreferenceLarson, J.L., Zak, D.R., and Sinsabaugh, R.L. ( 2002 ) Extracellular enzyme activity beneath temperate trees growing under elevated carbon dioxide and ozone. J Soil Sci Soc Am 66: 1848 – 1856.en_US
dc.identifier.citedreferenceLesaulnier, C., Papamichail, D., McCorkle, S., Ollivier, B., Skiena, S., Taghavi, S., et al. ( 2008 ) Elevated atmospheric CO 2 affects soil microbial diversity associated with trembling aspen. Environ Microbiol 10: 926 – 941.en_US
dc.identifier.citedreferenceLipson, D.A., Wilson, R.F., and Oechel, W.C. ( 2005 ) Effects of elevated atmospheric CO 2 on soil microbial biomass, activity an diversity in a chaparral ecosystem. Appl Environ Microbiol 71: 8573 – 8580.en_US
dc.identifier.citedreferenceLudwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., and Yadhukumar ( 2004 ) ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363 – 1371.en_US
dc.identifier.citedreferenceMcCarthy, H.R., Oren, R., Johnse, K.H., Gallet‐Budynek, A., Pritchard, S.G., Cook, C.W., et al. ( 2010 ) Re‐assessment of plant carbon dynamics at the Duke free‐air CO 2 enrichment site: interactions of atmospheric [CO 2 ] with nitrogen and water availability over stand development. New Phytol 185: 514 – 528.en_US
dc.identifier.citedreferenceMoorhead, D.L., and Linkins, A.E. ( 1997 ) Elevated CO 2 alters belowground exoenzyme activities in tussock tundra. Plant Soil 189: 321 – 329.en_US
dc.identifier.citedreferenceOlszyk, D.M., Johnson, M.G., Phillips, D.L., Seidler, R.J., Tingey, D.T., and Watrud, L.S. ( 2001 ) Interactive effects of CO 2 and O 3 on ponerosa pine plant/litter/soil mesocosm. Environ Poll 115: 447 – 462.en_US
dc.identifier.citedreferenceParsons, W.F., Bockheim, J.G., and Lindroth, R.L. ( 2008 ) Independent, interactive and species‐specific responses to leaf litter decomposition to elevated CO 2 and O 3 in a Northern Hardwood Forest. Ecosystems 11: 505 – 519.en_US
dc.identifier.citedreferenceSchlesinger, W.H., and Andrews, J.A. ( 2000 ) Soil respiration and the global carbon cycle. Biogeochem 48: 7 – 20.en_US
dc.identifier.citedreferenceSchloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., et al. ( 2009 ) Introducing mothur: open‐source, platform‐independent, community‐supported software for describing and comparing microbial communities. Appl Environ Microbiol 75: 7537 – 7541.en_US
dc.identifier.citedreferenceSeiler, T.J., Rasse, D.P., Li, J., Dijkstra, P., Anderson, H.P., Johnson, D.P., et al. ( 2009 ) Disturbance, rainfall and contrasting species responses mediated aboveground biomass response to 11 years of CO 2 enrichment in a Florida scrub‐oak ecosystem. Glob Change Biol 15: 356 – 367.en_US
dc.identifier.citedreferenceTreseder, K.K. ( 2004 ) A meta‐analysis of mycorrhizal responses to nitrogen, phosphorus and atmospheric CO 2 in field studies. New Phytol 164: 347 – 355.en_US
dc.identifier.citedreferenceTreseder, K.K. ( 2005 ) Nutrient acquisition strategies of fungi and their relation to elevated atmospheric CO 2. In The Fungal Community: Its Organization and Role in the Ecosystem, 3rd edn. Dighton, J., White, J.F., and Oudemans, P. (eds). Boca Raton, FL, USA: CRC Press, Taylor and Francis Group, pp. 713 – 731.en_US
dc.identifier.citedreferenceTreseder, K.K., Egerton‐Warburton, L.M., Allen, M.F., Cheng, Y., and Oechel, W.C. ( 2003 ) Alteration of soil carbon pools and communities of mycorrhizal fungi in chaparral exposed to elevated carbon dioxide. Ecosystems 6: 786 – 796.en_US
dc.identifier.citedreferenceWeatherly, H.E., Zitzer, S.F., Coleman, J.S., and Arnone, J.A., III ( 2003 ) In situ litter decomposition and litter quality in a Mojave Desert ecosystem: effects of elevated atmospheric CO 2 and interannual climate variability. Glob Change Biol 9: 1223 – 1233.en_US
dc.identifier.citedreferenceWebster, J., and Weber, R.W.S. ( 2007 ) Homobasidiomycetes. In Introduction to Fungi, 3rd edn. New York, USA: Cambridge University Press, pp. 514 – 576.en_US
dc.identifier.citedreferenceZak, D.R., Pregitzer, K.S., Curtis, P.S., Terri, J.A., Fogel, R., and Randlett, D.L. ( 1993 ) Elevated atmospheric CO 2 and feedback between carbon and nitrogen cycles. Plant Soil 151: 105 – 117.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.