Show simple item record

Engineering cocrystal solubility, stability, and pH max by micellar solubilization

dc.contributor.authorHuang, Neal Chunen_US
dc.contributor.authorRodríguez‐hornedo, Naíren_US
dc.date.accessioned2011-11-10T15:35:25Z
dc.date.available2013-02-01T20:26:16Zen_US
dc.date.issued2011-12en_US
dc.identifier.citationHuang, Neal; Rodríguez‐hornedo, Naír (2011). "Engineering cocrystal solubility, stability, and pH max by micellar solubilization." Journal of Pharmaceutical Sciences 100(12): 5219-5234. <http://hdl.handle.net/2027.42/86984>en_US
dc.identifier.issn0022-3549en_US
dc.identifier.issn1520-6017en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/86984
dc.description.abstractCocrystals offer great promise in enhancing drug aqueous solubilities, but face the challenge of conversion to a less soluble drug when in contact with solvent. This manuscript shows that differential solubilization of cocrystal components by micelles can impart thermodynamic stability to otherwise unstable cocrystals. The theoretical foundation for controlling cocrystal solubility and stability is presented by considering the contributions of micellar solubilization and ionization of cocrystal components. A surfactant critical stabilization concentration (CSC) and a solution pH (pH max ) where cocrystal and drug are thermodynamically stable are shown to characterize cocrystal stability in micellar solutions. The solubility, CSC, and pH max of carbamazepine cocrystals in micellar solutions of sodium lauryl sulfate predicted by the models are in very good agreement with experimental measurements. The findings from this work demonstrate that cocrystal CSC and pH max can be tailored from the selection of coformer and solubilizing additives such as surfactants, thus providing an unprecedented level of control over cocrystal stability and solubility via solution phase chemistry. © 2011 Wiley‐Liss, Inc. and the American Pharmacists Association J Pharm Sci 100:5219–5234, 2011en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherAcid–Base Equilibriaen_US
dc.subject.otherCocrystalsen_US
dc.subject.otherCrystal Engineeringen_US
dc.subject.otherSolubilityen_US
dc.subject.otherStabilizationen_US
dc.subject.otherSurfactantsen_US
dc.subject.otherThermodynamicsen_US
dc.subject.otherPHen_US
dc.subject.otherMicelleen_US
dc.titleEngineering cocrystal solubility, stability, and pH max by micellar solubilizationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPharmacy and Pharmacologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109‐1065en_US
dc.contributor.affiliationumDepartment of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109‐1065. Telephone: +734‐763‐0101; Fax: +734‐615‐6162en_US
dc.identifier.pmid21910122en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86984/1/22725_ftp.pdf
dc.identifier.doi10.1002/jps.22725en_US
dc.identifier.sourceJournal of Pharmaceutical Sciencesen_US
dc.identifier.citedreferenceFleischman SG, Kuduva SS, McMahon JA, Moulton B, Walsh RDB, Rodríguez‐Hornedo N, Zaworotko MJ. 2003. Crystal engineering of the composition of pharmaceutical phases: Multiple‐component crystalline solids involving carbamazepine. Cryst Growth Des 3 ( 6 ): 909 – 919.en_US
dc.identifier.citedreferenceChilds SL, Hardcastle KI. 2007. Cocrystals of piroxicam with carboxylic acids. Cryst Growth Des 7 ( 7 ): 1291 – 1304.en_US
dc.identifier.citedreferenceNehm SJ, Rodríguez‐Spong B, Rodríguez‐Hornedo N. 2006. Phase solubility diagrams of cocrystals are explained by solubility product and solution complexation. Cryst Growth Des 6 ( 2 ): 592 – 600.en_US
dc.identifier.citedreferenceBethune SJ, Huang N, Jayasankar A, Rodríguez‐Hornedo N. 2009. Understanding and predicting the effect of cocrystal components and pH on cocrystal solubility. Cryst Growth Des 9 ( 9 ): 3976 – 3988.en_US
dc.identifier.citedreferenceJayasankar A, Reddy LS, Bethune SJ, Rodríguez‐Hornedo N. 2009. Role of cocrystal and solution chemistry on the formation and stability of cocrystals with different stoichiometry. Cryst Growth Des 9 ( 2 ): 889 – 897.en_US
dc.identifier.citedreferenceRemenar JF, Peterson ML, Stephens PW, Zhang Z, Zimenkov Y, Hickey MB. 2007. Celecoxib:Nicotinamide dissociation: Using excipients to capture the cocrystal's potential. Mol Pharm 4 ( 3 ): 386 – 400.en_US
dc.identifier.citedreferenceMcNamara DP, Childs SL, Giordano J, Iarriccio A, Cassidy J, Shet MS, Mannion R, O'Donnell E, Park A. 2006. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharm Res 23 ( 8 ): 1888 – 1897.en_US
dc.identifier.citedreferenceYadav AV, Dabke AP, Shete AS. Crystal engineering to improve physicochemical properties of mefloquine hydrochloride. Drug Dev Ind Pharm 36 ( 9 ): 1036 – 1045.en_US
dc.identifier.citedreferenceChristian SD, Scamehorn JF. 1995. Solubilization in surfactant aggregates. Marcel Dekker, Inc., New York, New York.en_US
dc.identifier.citedreferenceStrickley RG. 2004. Solubilizing excipients in oral and injectable formulations. Pharm Res 21 ( 2 ): 201 – 230.en_US
dc.identifier.citedreferenceWiedmann TS, Kamel L. 2002. Examination of the solubilization of drugs by bile salt micelles. J Pharm Sci 91 ( 8 ): 1743 – 1764.en_US
dc.identifier.citedreferenceWiedmann TS, Bhatia R, Wattenberg LW. 2000. Drug solubilization in lung surfactant. J Control Release 65 ( 1–2 ): 43 – 47.en_US
dc.identifier.citedreferenceSerajuddin ATM, Sheen P‐C, Mufson D, Bernstein DF, Augustine MA. 1988. Physicochemical basis of increased bioavailability of a poorly water‐soluble drug following oral administration as organic solutions. J Pharm Sci 77 ( 4 ): 325 – 329.en_US
dc.identifier.citedreferenceSerajuddin ATM. 1999. Solid dispersion of poorly water‐soluble drugs: Early promises, subsequent problems, and recent breakthroughs. J Pharm Sci 88 ( 10 ): 1058 – 1066.en_US
dc.identifier.citedreferenceRodríguez‐Hornedo N, Nehm SJ, Jayasankar A. 2006. Cocrystals: Design, properties and formation mechanisms. In Encyclopedia of Pharmaceutical Technology, Eds. Swarbrick and Boylan, Informa Health Care, London; 3rd ed. pp 615 – 635.en_US
dc.identifier.citedreferenceRodríguez‐Hornedo N, Nehm SJ, Seefeldt KF, Pagan‐Torres Y, Falkiewicz CJ. 2006. Reaction crystallization of pharmaceutical molecular complexes. Mol Pharm 3: 362 – 367.en_US
dc.identifier.citedreferenceBak A, Gore A, Yanez E, Stanton M, Tufekcic S, Syed R, Akrami A, Rose M, Surapaneni S, Bostick T, King A, Neervannan S, Ostovic D, Koparkar A. 2008. The co‐crystal approach to improve the exposure of a water‐insoluble compound: AMG 517 sorbic acid co‐crystal characterization and pharmacokinetics. J Pharm Sci 97 ( 9 ): 3942 – 3956.en_US
dc.identifier.citedreferenceSchultheiss N, Newman A. 2009. Pharmaceutical cocrystals and their physicochemical properties. Cryst Growth Des 9 ( 6 ): 2950 – 2967.en_US
dc.identifier.citedreferenceHuang N, Rodríguez‐Hornedo N. 2010. Effect of micellar solubilization on cocrystal solubility and stability. Cryst Growth Des 10 ( 5 ): 2050 – 2053.en_US
dc.identifier.citedreferenceHuang N, Rodríguez‐Hornedo N. 2011. Engineering cocrystal thermodynamic stability and eutectic points by micellar solubilization and ionization. CrystEngComm 13 ( 17 ): 409 – 5422.en_US
dc.identifier.citedreferenceNordström FL, Rasmuson ÅC. 2006. Solubility and melting properties of salicylic acid. J Chem Eng Data 51 ( 5 ): 1668 – 1671.en_US
dc.identifier.citedreferenceWilliamson DS, Nagel DL, Markin RS, Cohen SM. 1987. Effect of pH and ions on the electronic structure of saccharin. Food Chem Toxicol 25 ( 3 ): 211 – 218.en_US
dc.identifier.citedreferenceKojima S, Ichigabase H, Iguchi S. 1966. Studies on sweetening agents. VII. Absorption and excretion of sodium cyclamate (2). Chem Pharm Bull 14 ( 9 ): 965 – 971.en_US
dc.identifier.citedreferenceO'Neil M, Smith A, Heckelman P, Budavari S. 2001. The Merck Index. 13th ed. New York: John Wiley and Sons.en_US
dc.identifier.citedreferenceRobinson RA, Biggs AI. 1957. The ionization constants of p‐aminobenzoic acid in aqueous solution at 25°C. Aust J Chem 10 ( 2 ): 128 – 134.en_US
dc.identifier.citedreferenceLi P, Tabibi SE, Yalkowsky SH. 1998. Combined effect of complexation and pH on solubilization. J Pharm Sci 87 ( 12 ): 1535 – 1537.en_US
dc.identifier.citedreferenceJain A, Ran YQ, Yalkowsky SH. 2004. Effect of pH‐sodium lauryl sulfate combination on solubilization of PG‐300995 (an anti‐HIV agent): A technical note. AAPS PharmSciTech 5 ( 3 ): 65 – 67.en_US
dc.identifier.citedreferenceHe Y, Yalkowsky SH. 2006. Solubilization of monovalent weak electrolytes by micellization or complexation. Int J Pharm 314 ( 1 ): 15 – 20.en_US
dc.identifier.citedreferenceGood DJ, Rodríguez‐Hornedo N. 2009. Solubility advantage of pharmaceutical cocrystals. Cryst Growth Des 9 ( 5 ): 2252 – 2264.en_US
dc.identifier.citedreferenceBethune SJ. 2009. Thermodynamic and kinetic parameters that explain crystallization and solubility of pharmaceutical cocrystals. PhD Thesis; University of Michigan, Ann Arbor, MI.en_US
dc.identifier.citedreferenceGood DJ, Rodríguez‐Hornedo N. 2010. Cocrystal eutectic constants and prediction of solubility behavior. Cryst Growth Des 10 ( 3 ): 1028 – 1032.en_US
dc.identifier.citedreferenceRodríguez‐Hornedo N, Murphy D. 2004. Surfactant‐facilitated crystallization of dihydrate carbamazepine during dissolution of anhydrous polymorph. J Pharm Sci 93 ( 2 ): 449 – 460.en_US
dc.identifier.citedreferenceMukerjee P, Mysels KJ. 1971. Critical micelle concentrations of aqueous surfactant systems. Washington, District of Columbia: US National Bureau of Standards.en_US
dc.identifier.citedreferenceCrison JR, Weiner ND, Amidon GL. 1997. Dissolution media for in vitro testing of water‐insoluble drugs: Effect of surfactant purity and electrolyte on in vitro dissolution of carbamazepine in aqueous solutions of sodium lauryl sulfate. J Pharm Sci 86 ( 3 ): 384 – 388.en_US
dc.identifier.citedreferenceSeedher N, Kanojia M. 2008. Micellar solubilization of some poorly soluble antidiabetic drugs: A technical note. AAPS PharmSciTech 9 ( 2 ): 431 – 436.en_US
dc.identifier.citedreferenceAburub A, Risley DS, Mishra D. 2008. A critical evaluation of fasted state simulating gastric fluid (FaSSGF) that contains sodium lauryl sulfate and proposal of a modified recipe. Int J Pharm 347 ( 1–2 ): 16 – 22.en_US
dc.identifier.citedreferenceMoroi Y. 1992. Micelles: Theoretical and applied aspects. Plenum Press, New York, New York.en_US
dc.identifier.citedreferenceRangel‐Yagui CO, Junior AP, Tavares LC. 2005. Micellar solubilization of drugs. J Pharm Sci 8 ( 2 ): 147 – 163.en_US
dc.identifier.citedreferencePennell KD, Adinolfi AM, Abriola LM, Diallo MS. 1997. Solubilization of dodecane, tetrachloroethylene, and 1,2‐dichlorobenzene in micellar solutions of ethoxylated nonionic surfactants. Environ Sci Technol 31 ( 5 ): 1382 – 1389.en_US
dc.identifier.citedreferenceStilbs P. 1983. A comparative study of micellar solubilization for combinations of surfactants and solubilizates using the Fourier transform pulsed‐gradient spin–echo NMR multicomponent self‐diffusion technique. J Colloid Interface Sci 94 ( 2 ): 463 – 469.en_US
dc.identifier.citedreferenceHayworth JS, Burris DR. 1997. Nonionic surfactant‐enhanced solubilization and recovery of organic contaminants from within cationic surfactant‐enhanced sorbent zones. 1. Experiments. Environ Sci Technol 31 ( 5 ): 1277 – 1283.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.