Show simple item record

Reproductive Character Displacement And Signal Ontogeny In A Sympatric Assemblage Of Electric Fish

dc.contributor.authorCrampton, William G. R.en_US
dc.contributor.authorLovejoy, Nathan R.en_US
dc.contributor.authorWaddell, Joseph C.en_US
dc.date.accessioned2011-11-10T15:35:36Z
dc.date.available2012-07-12T17:42:24Zen_US
dc.date.issued2011-06en_US
dc.identifier.citationCrampton, William G. R.; Lovejoy, Nathan R.; Waddell, Joseph C. (2011). "Reproductive Character Displacement And Signal Ontogeny In A Sympatric Assemblage Of Electric Fish." Evolution 65(6). <http://hdl.handle.net/2027.42/86991>en_US
dc.identifier.issn0014-3820en_US
dc.identifier.issn1558-5646en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/86991
dc.publisherBlackwell Publishing Incen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherElectrocommunicationen_US
dc.subject.otherGymnotusen_US
dc.subject.otherMasking Interferenceen_US
dc.subject.otherReinforcementen_US
dc.subject.otherSexual Selectionen_US
dc.subject.otherSignal Partitioningen_US
dc.titleReproductive Character Displacement And Signal Ontogeny In A Sympatric Assemblage Of Electric Fishen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationotherDepartment of Biology, University of Central Florida, 4000 Central Florida Boulevard, Orlando, 32816‐2368, Florida, USAen_US
dc.contributor.affiliationotherE‐mail: crampton@mail.ucf.eduen_US
dc.contributor.affiliationotherDepartment of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canadaen_US
dc.identifier.pmid21644955en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86991/1/j.1558-5646.2011.01245.x.pdf
dc.identifier.doi10.1111/j.1558-5646.2011.01245.xen_US
dc.identifier.sourceEvolutionen_US
dc.identifier.citedreferenceAguilera, P. A., M. E. Castello, and A. A. Caputi. 2001. Electroreception in Gymnotus carapo: differences between self‐generated and conspecific‐generated signal carriers. J. Exp. Biol. 204: 185 – 198.en_US
dc.identifier.citedreferenceAlbert, J. S, and W. G. R. Crampton. 2005. Electroreception and electrogenesis. Pp. 431 – 472 in D. Evans, ed. The physiology of fishes. 3rd ed. C.R.C. Press, New York.en_US
dc.identifier.citedreferenceAlbert, J. S., W. G. R. Crampton, D. H. Thorsen, and N. R. Lovejoy. 2004. Phylogenetic systematics and historical biogeography of the Neotropical electric fish Gymnotus (Gymnotidae: Teleostei). Syst. Biodivers. 2: 375 – 417.en_US
dc.identifier.citedreferenceAllender, C. J., O. Seehausen, M. E. Knight, G. F. Turner, and N. Maclean. 2003. Divergent selection during speciation of Lake Malawi cichlid fishes inferred from parallel radiations in nuptial coloration. Proc. Natl. Acad. Sci. USA 100: 14074 – 14079.en_US
dc.identifier.citedreferenceAmezquita, A., W. Hodl, A. P. Lima, L. Castellanos, L. Erdtmann, and M. C. De Araujo. 2006. Masking interference and the evolution of the acoustic communication system in the Amazonian dendrobatid frog Allobates femoralis. Evolution 60: 1874 – 1887.en_US
dc.identifier.citedreferenceArnegard, M. E., and C. D. Hopkins. 2003. Electric signal variation among seven blunt‐snouted Brienomyrus species (Teleostei: Mormyridae) from a riverine species flock in Gabon, Central Africa. Environ. Biol. Fishes 67: 321 – 339.en_US
dc.identifier.citedreferenceArnegard, M. E., S. M. Bogdanowicz, and C. D. Hopkins. 2005. Multiple cases of striking genetic similarity between alternate electric fish signal morphs in sympatry. Evolution 59: 324 – 343.en_US
dc.identifier.citedreferenceArnegard, M. E., B. S. Jackson, and C. D. Hopkins. 2006. Time‐domain signal divergence and discrimination without receptor modification in sympatric morphs of electric fishes. J. Exp. Biol. 209: 2182 – 2198.en_US
dc.identifier.citedreferenceArnegard, M. E., P. B. McIntyre, L. J. Harmon, M. L. Zelditch, W. G. R. Crampton, J. K. Davis, J. P. Sullivan, S. Lavoué, and C. D. Hopkins. 2010a. Sexual signal evolution outpaces ecological divergence during electric fish species radiation. Am. Nat. 176: 335 – 356.en_US
dc.identifier.citedreferenceArnegard, M. E., D. J. Zwickl, Y. Lu, and H. H. Zakon. 2010b. Old gene duplication facilitates origin and diversification of an innovative communication system—twice. Proc. Natl. Acad. Sci. USA 107: 22172 – 22177.en_US
dc.identifier.citedreferenceBass, A. H. 1986. A hormone‐sensitive communication system in an electric fish. J. Neurobiol. 17: 131 – 156.en_US
dc.identifier.citedreferenceBoughman, J. W. 2001. Divergent sexual selection enhances reproductive isolation in sticklebacks. Nature 411: 944 – 948.en_US
dc.identifier.citedreferenceBoughman, J. W. 2002. How sensory drive can promote speciation. Trends Ecol. Evol. 17: 571 – 577.en_US
dc.identifier.citedreferenceBoul, K. E., W. C. Funk, C. R. Darst, D. C. Cannatella, and M. J. Ryan. 2007. Sexual selection drives speciation in an Amazonian frog. Proc. R. Soc. Lond. B. Biol. Sci. 274: 399 – 406.en_US
dc.identifier.citedreferenceBrenowitz, E. A. 1986. Environmental influences on acoustic and electric animal communication signals. Brain, Behav. Evol. 28: 32 – 42.en_US
dc.identifier.citedreferenceBullock, T. H., C. D. Hopkins, A. N. Popper, and R. R. Fay. 2005. Electroreception. Springer, New York.en_US
dc.identifier.citedreferenceButlin, R. K. 1995. Reinforcement: an idea evolving. Trends Ecol. Evol. 10: 432 – 434.en_US
dc.identifier.citedreferenceButlin, R. K., and M. G. Ritchie. 1994. Mating behaviour and speciation. Pp. 43 – 79 in P. J. B. Slater and T. R. Halliday, eds. Behaviour and speciation. Cambridge Univ. Press, Cambridge.en_US
dc.identifier.citedreferenceChek, A. A., B. P. Bogart, and S. C. Lougheed. 2003. Mating signal partitioning in multi‐species assemblages: a null model test using frogs. Ecol. Lett. 6: 235 – 247.en_US
dc.identifier.citedreferenceCherry, L. M., S. M. Case, J. G. Kunkel, J. S. Wyles, and A. C. Wilson. 1982. Body shape metrics and organismal evolution. Evolution 36: 914 – 933.en_US
dc.identifier.citedreferenceClutton‐Brock, T. H. 1991. The evolution of parental care. Princeton Univ. Press, Princeton, NJ.en_US
dc.identifier.citedreferenceCooley, J. R. 2007. Decoding asymmetries in reproductive character displacement. Proc. Acad. Nat. Sci. Philadelphia 156: 89 – 96.en_US
dc.identifier.citedreferenceCrampton, W. G. R. 2006. Evolution of electric signal diversity in gymnotiform fishes. II. Signal design. Pp. 697 – 731 in F. Ladich, S. P. Collin, P. Moller, and B. G. Kapoor, eds. Communication in fishes. Science Publishers, Enfield, NH.en_US
dc.identifier.citedreferenceCrampton, W. G. R. 2011. An ecological perspective on diversity and distributions. Pp. 165 – 189 in J. S. Albert and R. E. Reis, eds. Historical biogeography of Neotropical freshwater fishes. Univ. California Press, Berkeley, CA:en_US
dc.identifier.citedreferenceCrampton, W. G. R., and J. S. Albert. 2006. Evolution of electric signal diversity in gymnotiform fishes. I. Phylogenetic systematics, ecology and biogeography. Pp. 647 – 696; 718 – 731 in F. Ladich, S. P. Collin, P. Moller, and B. G. Kapoor, eds. Communication in fishes. Science Publishers, Enfield, NH.en_US
dc.identifier.citedreferenceCrampton, W. G. R., and C. D. Hopkins. 2005. Nesting and paternal care in the weakly electric fish Gymnotus (Gymnotiformes: Gymnotidae) with descriptions of larval and adult electric organ discharges of two species. Copeia 2005: 48 – 60.en_US
dc.identifier.citedreferenceCrampton, W. G. R., J. K. Davis, N. R. Lovejoy, and M. Pensky. 2008. Multivariate classification of animal communication signals: a simulation‐based comparison of alternative signal processing procedures using electric fishes. J. Physiol. Paris 102: 304 – 321.en_US
dc.identifier.citedreferenceEndler, J. A. 1989. Conceptual and other problems in speciation. Pp. 625 – 648 in D. Otte and J. A. Endler, eds. Speciation and its consequences. Sinauer, Sunderland, MA.en_US
dc.identifier.citedreferenceEndler, J. A., D. A. Westcott, J. R. Madden, and T. Robson. 2005. Animal visual systems and the evolution of color patterns: sensory processing illuminates signal evolution. Evolution 59: 1795 – 1818.en_US
dc.identifier.citedreferenceFeulner, P. G. D., F. Kirschbaum, C. Schugardt, V. Ketmaier, and R. Tiedemann. 2006. Electrophysiological and molecular genetic evidence for sympatrically occurring cryptic species in African weakly electric fishes (Teleostei: Mormyridae: Campylomormyrus ). Mol. Phylogenet. Evol. 39: 198 – 208.en_US
dc.identifier.citedreferenceFeulner, P. G. D., M. Plath, J. Engelmann, F. Kirschbaum, and R. Tiedemann. 2009. Electrifying love: electric fish use species‐specific discharge for mate recognition. Biol. Lett. 5: 225 – 228.en_US
dc.identifier.citedreferenceFisher, R. 1958. The genetical theory of natural selection. 2nd edition. Clarendon Press, Oxford, UK.en_US
dc.identifier.citedreferenceGerhardt, H. C. 1999. Reproductive character displacement and other sources of selection on acoustic communication systems. Pp. 515 – 534 in M. D. Hauser, and M. Konishi, eds. The design of animal communication. MIT Press, Cambridge, MA.en_US
dc.identifier.citedreferenceGerhardt, H. C., and F. Huber. 2002. Acoustic communication in insects and anurans: common problems and diverse solutions. The Univ. of Chicago Press, Chicago.en_US
dc.identifier.citedreferenceGröning, J., and A. Hochkirch. 2008. Reproductive interference between animal species. Q. Rev. Biol. 83: 257 – 282.en_US
dc.identifier.citedreferenceHiggie, M., and M. W. Blows. 2007. Are traits that experience reinforcement also under sexual selection? Am. Nat. 170: 409 – 420.en_US
dc.identifier.citedreferenceHopkins, C. D. 1988. Neuroethology of electric communication. Ann. Rev. Neurosci. 11: 497 – 535.en_US
dc.identifier.citedreferenceHopkins, C. D. 1999. Signal evolution in electric communication. Pp. 461 – 491 in M. D. Hauser, and M. Konishi, eds. The design of animal communication. MIT Press, Cambridge, MA.en_US
dc.identifier.citedreferenceHoward, D. J. 1993. Reinforcement: origin, dynamics, and fate of an evolutionary hypothesis. Pp. 46 – 69 in R. Harrison, ed. Hybrid zones and the evolutionary process. Oxford Univ. Press, New York.en_US
dc.identifier.citedreferenceKonings, A. 2001. Malawi cichlids in their natural habitat. 3rd edition. Cichlid Press, El Paso.en_US
dc.identifier.citedreferenceLeal, M., and Losos, J. B. 2010. Communication and speciation. Nature 467: 159 – 160.en_US
dc.identifier.citedreferenceLemmon, E. M. 2009. Diversification of conspecific signals in sympatry: geographic overlap drives multidimensional reproductive character displacement in frogs. Evolution 63: 1155 – 1170.en_US
dc.identifier.citedreferenceLovejoy, N. R., K. Lester, W. G. R. Crampton, F. P. L. Marques, and J. S. Albert. 2010. Phylogeny, biogeography, and electric signal evolution of Neotropical knifefishes of the genus Gymnotus (Pisces: Gymnotidae). Mol. Phylogenet. Evol. 54: 278 – 290.en_US
dc.identifier.citedreferenceLuddecke, H., A. Amezquita, X. Bernal, and F. Guzman. 2000. Partitioning of vocal activity in a Neotropical highland‐frog community. Stud. Neotrop. Fauna Environ. 35: 185 – 194.en_US
dc.identifier.citedreferenceLuther, D. A., and R. H. Wiley. 2009. Production and perception of communicatory signals in a noisy environment. Biol. Lett. 5: 183 – 187.en_US
dc.identifier.citedreferenceMahalanobis, P. C. 1936. On the generalized distance in statistics. Proc. Nat. Inst. Sci. India 2: 49 – 55.en_US
dc.identifier.citedreferenceMayr, E. 1988. The why and how of species. Biol. Phil. 3: 431 – 441.en_US
dc.identifier.citedreferenceMendelson, T. C., and K. L. Shaw. 2005. Rapid speciation in an arthropod. Nature 433: 375 – 376.en_US
dc.identifier.citedreferenceNelson, D. A. 1989. The importance of invariant and distinctive features in species recognition of bird song. Condor 91: 120 – 130.en_US
dc.identifier.citedreferenceNelson, D. A., and P. Marler. 1990. The perception of birdsong and an ecological concept of signal space. Pp. 443 – 478 in W. C. Stebbins, and M. A. Berkley, eds. Comparative perception. Vol. II. Complex Signals. J. Wiley, New York, NY.en_US
dc.identifier.citedreferenceNoor, M. A. F. 1999. Reinforcement and other consequences of sympatry. Heredity 83: 503 – 508.en_US
dc.identifier.citedreferenceOtte, D. 1994. The crickets of Hawaii: origin, systematics and evolution. The Orthopterist's Society, Philadelphia, PA.en_US
dc.identifier.citedreferencePereira, A. C., A. Rodríguez‐Cattaneo, M. E. Castello, and A. A. Caputi. 2007. Post‐natal development of the electromotor system in a pulse gymnotid electric fish. J. Exp. Biol. 210: 800 – 814.en_US
dc.identifier.citedreferencePfennig, K. S., and D. W. Pfennig. 2009. Character displacement: ecological and reproductive responses to a common evolutionary problem. Q. Rev. Biol. 84: 253 – 276.en_US
dc.identifier.citedreferencePodos, J. 2001. Correlated evolution of morphology and vocal signal structure in Darwin's finches. Nature 409: 185 – 188.en_US
dc.identifier.citedreferencePomiankowski, A., and Y. Iwasa. 1998. Runaway ornament diversity caused by Fisherian sexual selection. Proc. Natl. Acad. Sci. USA 95: 5106 – 5111.en_US
dc.identifier.citedreferenceRodríguez‐Cattaneo, A., A. C. Pereira, P. A. Aguilera, W. G. R. Crampton, and A. A. Caputi. 2008. Species‐specificity of a fixed motor pattern: the electric organ discharge of Gymnotus. PLOS One 3: 1 – 13.en_US
dc.identifier.citedreferenceRyan, M. J. 1985. The tungara frog: a study in sexual selection and communication. Univ. of Chicago Press, Chicago.en_US
dc.identifier.citedreferenceRyan, M. J., and A. S. Rand. 1993. Species recognition and sexual selection as a unitary problem in animal communication. Evolution 47: 647 – 657.en_US
dc.identifier.citedreferenceSalazar, V. L., and P. K. Stoddard. 2008. Sex differences in energetic costs explain sexual dimorphism in the circadian rhythm modulation of the electrocommunication signal of the gymnotiform fish Brachyhypopomus pinnicaudatus. J. Exp. Biol. 211: 1012 – 1020.en_US
dc.identifier.citedreferenceSeehausen, O., Y. Terai, I. S. Magalhaes, K. L. Carleton, H. D. J. Mrosso, R. Miyagi, I. Van Der Sluijs, M. V. Schneider, M. E. Maan, H. Tachida, et al. 2008. Speciation through sensory drive in cichlid fish. Nature 455: 620 – 623.en_US
dc.identifier.citedreferenceServedio, M. R., and M. A. F. Noor. 2003. The role of reinforcement in speciation: theory and data. Ann. Rev. Ecol. Evol. Syst. 34: 339 – 364.en_US
dc.identifier.citedreferenceSibley, D. 2003. Field guide to the birds of eastern North America. Christopher Helm, London, U.K.en_US
dc.identifier.citedreferenceStoddard, P. K. 1999. Predation enhances complexity in the evolution of electric fish signals. Nature 400: 254 – 256.en_US
dc.identifier.citedreferenceStoddard, P. K., and M. R. Markham. 2008. Signal cloaking by electric fish. Bioscience 58: 415 – 425.en_US
dc.identifier.citedreferenceTobias, J. A., J. Aben, R. T. Brumfield, E. P. Derryberry, W. Halfwerk, H. Slabbekoorn, and N. Seddon. 2010. Song divergence by sensory drive in Amazonian birds. Evolution. 64: 2820 – 2839.en_US
dc.identifier.citedreferencevon der Emde, G., and T. Ringer. 1992. Electrolocation of capacitive objects in four species of pulse‐type weakly electric fish. I. Discrimination performance. Ethology 91: 326 – 338.en_US
dc.identifier.citedreferenceWestby, G. W. M. 1979. Electrical communication and jamming avoidance between resting Gymnotus carapo. Anim. Behav. 23: 192 – 213.en_US
dc.identifier.citedreferenceWollerman, L. 1999. Acoustic interference limits call detection in a Neotropical frog Hyla ebraccata. Anim. Behav. 57: 529 – 536.en_US
dc.identifier.citedreferenceZahavi, A. 1977. The cost of honesty (further remarks on the handicap principle). J. Theor. Biol. 67: 603 – 605.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.