Show simple item record

Hepatocyte growth factor–regulated tyrosine kinase substrate ( Hgs ) is involved in BMP signaling through phosphorylation of smads and TAK1 in early mouse embryo

dc.contributor.authorMiura, Shigetoen_US
dc.contributor.authorMishina, Yujien_US
dc.date.accessioned2011-11-10T15:35:51Z
dc.date.available2013-01-02T16:32:25Zen_US
dc.date.issued2011-11en_US
dc.identifier.citationMiura, Shigeto; Mishina, Yuji (2011). "Hepatocyte growth factor–regulated tyrosine kinase substrate ( Hgs ) is involved in BMP signaling through phosphorylation of smads and TAK1 in early mouse embryo." Developmental Dynamics 240(11): 2474-2481. <http://hdl.handle.net/2027.42/87001>en_US
dc.identifier.issn1058-8388en_US
dc.identifier.issn1097-0177en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87001
dc.description.abstractHepatocyte growth factor–regulated tyrosine kinase substrate that is encoded by Hgs promotes degradation of ubiquitinated signaling molecule in the early endosome. We previously reported that a targeted mutation in Hgs results in embryonic lethality soon after gastrulation in the mouse. Here, we report that downstream target genes for BMP signaling were highly down‐regulated in the Hgs mutant embryos. We also showed that Hgs is required for phosphorylation of SMAD1/5/8 and TAK1/p38 to transduce BMP signaling. Furthermore, we found that HGS functions to localize TAK1 in early endosome for its activation. These results suggest that HGS is critical to localize TAK1 to early endosome for transducing BMP signaling for proper development. Our data revealed a new mechanism to modify BMP signaling by Hgs during early mouse development. Developmental Dynamics 240:2474–2481, 2011. © 2011 Wiley‐Liss, Inc.en_US
dc.publisherWiley‐Liss, Inc.en_US
dc.subject.otherGastrulationen_US
dc.subject.otherSignal Transductionen_US
dc.subject.otherEndosomeen_US
dc.titleHepatocyte growth factor–regulated tyrosine kinase substrate ( Hgs ) is involved in BMP signaling through phosphorylation of smads and TAK1 in early mouse embryoen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPediatricsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109‐1078en_US
dc.contributor.affiliationotherLaboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolinaen_US
dc.identifier.pmid21953618en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87001/1/22750_ftp.pdf
dc.identifier.doi10.1002/dvdy.22750en_US
dc.identifier.sourceDevelopmental Dynamicsen_US
dc.identifier.citedreferenceAdhikari A, Xu M, Chen ZJ. 2007. Ubiquitin‐mediated activation of TAK1 and IKK. Oncogene 26: 3214 – 3226.en_US
dc.identifier.citedreferenceBelo JA, Bouwmeester T, Leyns L, Kertesz N, Gallo M, Follettie M, De Robertis EM. 1997. Cerberus‐like is a secreted factor with neutralizing activity expressed in the anterior primitive endoderm of the mouse gastrula. Mech Dev 68: 45 – 57.en_US
dc.identifier.citedreferenceBen‐Haim N, Lu C, Guzman‐Ayala M, Pescatore L, Mesnard D, Bischofberger M, Naef F, Robertson EJ, Constam DB. 2006. The nodal precursor acting via activin receptors induces mesoderm by maintaining a source of its convertases and BMP4. Dev Cell 11: 313 – 323.en_US
dc.identifier.citedreferenceCandia AF, Hu J, Crosby J, Lalley PA, Noden D, Nadeau JH, Wright CV. 1992. Mox‐1 and Mox‐2 define a novel homeobox gene subfamily and are differentially expressed during early mesodermal patterning in mouse embryos. Development 116: 1123 – 1136.en_US
dc.identifier.citedreferenceCatron KM, Wang H, Hu G, Shen MM, Abate‐Shen C. 1996. Comparison of MSX‐1 and MSX‐2 suggests a molecular basis for functional redundancy. Mech Dev 55: 185 – 199.en_US
dc.identifier.citedreferenceChen X, Zankl A, Niroomand F, Liu Z, Katus HA, Jahn L, Tiefenbacher C. 2006. Upregulation of ID protein by growth and differentiation factor 5 (GDF5) through a smad‐dependent and MAPK‐independent pathway in HUVSMC. J Mol Cell Cardiol 41: 26 – 33.en_US
dc.identifier.citedreferenceChu GC, Dunn NR, Anderson DC, Oxburgh L, Robertson EJ. 2004. Differential requirements for Smad4 in TGFbeta‐dependent patterning of the early mouse embryo. Development 131: 3501 – 3512.en_US
dc.identifier.citedreferenceConlon FL, Lyons KM, Takaesu N, Barth KS, Kispert A, Herrmann B, Robertson EJ. 1994. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120: 1919 – 1928.en_US
dc.identifier.citedreferenceDavis S, Miura S, Hill C, Mishina Y, Klingensmith J. 2004. BMP receptor IA is required in the mammalian embryo for endodermal morphogenesis and ectodermal patterning. Dev Biol 270: 47 – 63.en_US
dc.identifier.citedreferenceDi‐Gregorio A, Sancho M, Stuckey DW, Crompton LA, Godwin J, Mishina Y, Rodriguez TA. 2007. BMP signalling inhibits premature neural differentiation in the mouse embryo. Development 134: 3359 – 3369.en_US
dc.identifier.citedreferenceDu Y, Yip H. 2010. Effects of bone morphogenetic protein 2 on Id expression and neuroblastoma cell differentiation. Differentiation 79: 84 – 92.en_US
dc.identifier.citedreferenceEllmeier W, Weith A. 1995. Expression of the helix‐loop‐helix gene Id3 during murine embryonic development. Dev Dyn 203: 163 – 173.en_US
dc.identifier.citedreferenceGorvel JP, Chavrier P, Zerial M, Gruenberg J. 1991. rab5 controls early endosome fusion in vitro. Cell 64: 915 – 925.en_US
dc.identifier.citedreferenceGu Z, Nomura M, Simpson BB, Lei H, Feijen A, van den Eijnden‐van Raaij J, Donahoe PK, Li E. 1998. The type I activin receptor ActRIB is required for egg cylinder organization and gastrulation in the mouse. Genes Dev 12: 844 – 857.en_US
dc.identifier.citedreferenceItoh F, Divecha N, Brocks L, Oomen L, Janssen H, Calafat J, Itoh S, Dijke Pt P. 2002. The FYVE domain in Smad anchor for receptor activation (SARA) is sufficient for localization of SARA in early endosomes and regulates TGF‐beta/Smad signalling. Genes Cells 7: 321 – 331.en_US
dc.identifier.citedreferenceJadrich JL, O'Connor MB, Coucouvanis E. 2006. The TGF beta activated kinase TAK1 regulates vascular development in vivo. Development 133: 1529 – 1541.en_US
dc.identifier.citedreferenceJen Y, Manova K, Benezra R. 1996. Expression patterns of Id1, Id2, and Id3 are highly related but distinct from that of Id4 during mouse embryogenesis. Dev Dyn 207: 235 – 252.en_US
dc.identifier.citedreferenceKishigami S, Mishina Y. 2005. BMP signaling and early embryonic patterning. Cytokine Growth Factor Rev 16: 265 – 278.en_US
dc.identifier.citedreferenceKishigami S, Yoshikawa S, Castranio T, Okazaki K, Furuta Y, Mishina Y. 2004. BMP signaling through ACVRI is required for left‐right patterning in the early mouse embryo. Dev Biol 276: 185 – 193.en_US
dc.identifier.citedreferenceKomada M, Soriano P. 1999. Hrs, a FYVE finger protein localized to early endosomes, is implicated in vesicular traffic and required for ventral folding morphogenesis. Genes Dev 13: 1475 – 1485.en_US
dc.identifier.citedreferenceKomada M, Masaki R, Yamamoto A, Kitamura N. 1997. Hrs, a tyrosine kinase substrate with a conserved double zinc finger domain, is localized to the cytoplasmic surface of early endosomes. J Biol Chem 272: 20538 – 20544.en_US
dc.identifier.citedreferenceLiu P, Wakamiya M, Shea MJ, Albrecht U, Behringer RR, Bradley A. 1999. Requirement for Wnt3 in vertebrate axis formation. Nat Genet 22: 361 – 365.en_US
dc.identifier.citedreferenceLloyd TE, Atkinson R, Wu MN, Zhou Y, Pennetta G, Bellen HJ. 2002. Hrs regulates endosome membrane invagination and tyrosine kinase receptor signaling in Drosophila. Cell 108: 261 – 269.en_US
dc.identifier.citedreferenceMahlapuu M, Ormestad M, Enerback S, Carlsson P. 2001. The forkhead transcription factor Foxf1 is required for differentiation of extra‐embryonic and lateral plate mesoderm. Development 128: 155 – 166.en_US
dc.identifier.citedreferenceMandal CC, Ghosh Choudhury G, Ghosh‐Choudhury N. 2009. Phosphatidylinositol 3 kinase/Akt signal relay cooperates with smad in bone morphogenetic protein‐2‐induced colony stimulating factor‐1 (CSF‐1) expression and osteoclast differentiation. Endocrinology 150: 4989 – 4998.en_US
dc.identifier.citedreferenceMishina Y, Suzuki A, Ueno N, Behringer RR. 1995. Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev 9: 3027 – 3037.en_US
dc.identifier.citedreferenceMishina Y. 2003. Function of bone morphogenetic protein signaling during mouse development. Front Biosci 8: d855 – 869.en_US
dc.identifier.citedreferenceMiura S, Takeshita T, Asao H, Kimura Y, Murata K, Sasaki Y, Hanai JI, Beppu H, Tsukazaki T, Wrana JL, Miyazono K, Sugamura K. 2000. Hgs (Hrs), a FYVE domain protein, is involved in Smad signaling through cooperation with SARA. Mol Cell Biol 20: 9346 – 9355.en_US
dc.identifier.citedreferenceMiura S, Davis S, Klingensmith J, Mishina Y. 2006. BMP signaling in the epiblast is required for proper recruitment of the prospective paraxial mesoderm and development of the somites. Development 133: 3767 – 3775.en_US
dc.identifier.citedreferenceMiura S, Singh AP, Mishina Y. 2010. Bmpr1a is required for proper migration of the AVE through regulation of Dkk1 expression in the pre‐streak mouse embryo. Dev Biol 341: 246 – 254.en_US
dc.identifier.citedreferenceMiyazono K, Miyazawa K. 2002. Id: a target of BMP signaling. Sci STKE 2002: pe40.en_US
dc.identifier.citedreferenceNichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe‐Nebenius D, Chambers I, Scholer H, Smith A. 1998. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95: 379 – 391.en_US
dc.identifier.citedreferenceNinomiya‐Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K. 1999. The kinase TAK1 can activate the NIK‐I kappaB as well as the MAP kinase cascade in the IL‐1 signalling pathway. Nature 398: 252 – 256.en_US
dc.identifier.citedreferencePark C, Afrikanova I, Chung YS, Zhang WJ, Arentson E, Fong Gh G, Rosendahl A, Choi K. 2004. A hierarchical order of factors in the generation of FLK1‐ and SCL‐expressing hematopoietic and endothelial progenitors from embryonic stem cells. Development 131: 2749 – 2762.en_US
dc.identifier.citedreferenceRaiborg C, Bremnes B, Mehlum A, Gillooly DJ, D'Arrigo A, Stang E, Stenmark H. 2001. FYVE and coiled‐coil domains determine the specific localisation of Hrs to early endosomes. J Cell Sci 114: 2255 – 2263.en_US
dc.identifier.citedreferenceRuss AP, Wattler S, Colledge WH, Aparicio SA, Carlton MB, Pearce JJ, Barton SC, Surani MA, Ryan K, Nehls MC, Wilson V, Evans MJ. 2000. Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature 404: 95 – 99.en_US
dc.identifier.citedreferenceSasaki Y, Sugamura K. 2001. Involvement of Hgs/Hrs in signaling for cytokine‐mediated c‐fos induction through interaction with TAK1 and Pak1. J Biol Chem 276: 29943 – 29952.en_US
dc.identifier.citedreferenceShibuya H, Iwata H, Masuyama N, Gotoh Y, Yamaguchi K, Irie K, Matsumoto K, Nishida E, Ueno N. 1998. Role of TAK1 and TAB1 in BMP signaling in early Xenopus development. EMBO J 17: 1019 – 1028.en_US
dc.identifier.citedreferenceSpiro DJ, Boll W, Kirchhausen T, Wessling‐Resnick M. 1996. Wortmannin alters the transferrin receptor endocytic pathway in vivo and in vitro. Mol Biol Cell 7: 355 – 367.en_US
dc.identifier.citedreferenceToyoshima M, Tanaka N, Aoki J, Tanaka Y, Murata K, Kyuuma M, Kobayashi H, Ishii N, Yaegashi N, Sugamura K. 2007. Inhibition of tumor growth and metastasis by depletion of vesicular sorting protein Hrs: its regulatory role on E‐cadherin and beta‐catenin. Cancer Res 67: 5162 – 5171.en_US
dc.identifier.citedreferenceWinnier G, Blessing M, Labosky PA, Hogan BL. 1995. Bone morphogenetic protein‐4 is required for mesoderm formation and patterning in the mouse. Genes Dev 9: 2105 – 2116.en_US
dc.identifier.citedreferenceYamaguchi K, Nagai S, Ninomiya‐Tsuji J, Nishita M, Tamai K, Irie K, Ueno N, Nishida E, Shibuya H, Matsumoto K. 1999. XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1‐TAK1 in the BMP signaling pathway. EMBO J 18: 179 – 187.en_US
dc.identifier.citedreferenceYamamoto M, Beppu H, Takaoka K, Meno C, Li E, Miyazono K, Hamada H. 2009. Antagonism between Smad1 and Smad2 signaling determines the site of distal visceral endoderm formation in the mouse embryo. J Cell Biol 184: 323 – 334.en_US
dc.identifier.citedreferenceYang YP, Klingensmith J. 2006. Roles of organizer factors and BMP antagonism in mammalian forebrain establishment. Dev Biol 296: 458 – 475.en_US
dc.identifier.citedreferenceYao J, Kim TW, Qin J, Jiang Z, Qian Y, Xiao H, Lu Y, Qian W, Gulen MF, Sizemore N, DiDonato J, Sato S, Akira S, Su B, Li X. 2007. Interleukin‐1 (IL‐1)‐induced TAK1‐dependent Versus MEKK3‐dependent NFkappaB activation pathways bifurcate at IL‐1 receptor‐associated kinase modification. J Biol Chem 282: 6075 – 6089.en_US
dc.identifier.citedreferenceYing QL, Nichols J, Chambers I, Smith A. 2003. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self‐renewal in collaboration with STAT3. Cell 115: 281 – 292.en_US
dc.identifier.citedreferenceYu PB, Hong CC, Sachidanandan C, Babitt JL, Deng DY, Hoyng SA, Lin HY, Bloch KD, Peterson RT. 2008. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat Chem Biol 4: 33 – 41.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.