Show simple item record

Activation of a prophage‐encoded tyrosine kinase by a heterologous infecting phage results in a self‐inflicted abortive infection

dc.contributor.authorFriedman, David I.en_US
dc.contributor.authorMozola, Cara C.en_US
dc.contributor.authorBeeri, Karenen_US
dc.contributor.authorKo, Ching‐chungen_US
dc.contributor.authorReynolds, Jared L.en_US
dc.date.accessioned2011-11-10T15:36:04Z
dc.date.available2013-01-02T16:32:27Zen_US
dc.date.issued2011-11en_US
dc.identifier.citationFriedman, David I.; Mozola, Cara C.; Beeri, Karen; Ko, Ching‐chung ; Reynolds, Jared L. (2011). "Activation of a prophageâ encoded tyrosine kinase by a heterologous infecting phage results in a selfâ inflicted abortive infection." Molecular Microbiology 82(3). <http://hdl.handle.net/2027.42/87011>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87011
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleActivation of a prophage‐encoded tyrosine kinase by a heterologous infecting phage results in a self‐inflicted abortive infectionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherPittsburgh Bacteriophage Institute, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87011/1/j.1365-2958.2011.07847.x.pdf
dc.identifier.doi10.1111/j.1365-2958.2011.07847.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceAckermann, M., Stecher, B., Freed, N.E., Songhet, P., Hardt, W.D., and Doebeli, M. ( 2008 ) Self‐destructive cooperation mediated by phenotypic noise. Nature 454: 987 – 990.en_US
dc.identifier.citedreferenceArber, W. ( 1971 ) Host‐controlled variation. In The Bacteriophage Lambda. Hershey, A.D. (ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, pp. 83 – 96.en_US
dc.identifier.citedreferenceBenzer, S. ( 1955 ) Fine Structure of a Genetic Region in Bacteriophage. Proc Natl Acad Sci USA 41: 344 – 354.en_US
dc.identifier.citedreferenceBenzer, S. ( 1966 ) Adventures in the rII region. In Phage and the Origins of Molecular Biology. Cairns, J., Stent, G.S., and Watson, J.W. (eds). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, pp. 157 – 165.en_US
dc.identifier.citedreferenceBotstein, D., and Matz, M.J. ( 1970 ) A recombination function essential to the growth of bacteriophage P22. J Mol Biol 54: 417 – 440.en_US
dc.identifier.citedreferenceBrouns, S.J., Jore, M.M., Lundgren, M., Westra, E.R., Slijkhuis, R.J., Snijders, A.P., et al. ( 2008 ) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321: 960 – 964.en_US
dc.identifier.citedreferenceBurnside, K., and Rajagopal, L. ( 2011 ) Aspects of eukaryotic‐like signaling in Gram‐positive cocci: a focus on virulence. Future Microbiol 6: 747 – 761.en_US
dc.identifier.citedreferenceCampbell, A. ( 1994 ) Comparative molecular biology of lambdoid phages. Annu Rev Microbiol 48: 193 – 222.en_US
dc.identifier.citedreferenceCampbell, A., and Botstein, D. ( 1983 ) Evolution of Lambdoid Phages. In Lambda II. Hendrix, R.W., Roberts, J.W., Stahl, F.W., and Weisberg, R.A. (eds). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp. 365 – 380.en_US
dc.identifier.citedreferenceChopin, M.C., Chopin, A., and Bidnenko, E. ( 2005 ) Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8: 473 – 479.en_US
dc.identifier.citedreferenceCorreia, F.F., D'Onofrio, A., Rejtar, T., Li, L., Karger, B.L., Makarova, K., et al. ( 2006 ) Kinase activity of overexpressed HipA is required for growth arrest and multidrug tolerance in Escherichia coli. J Bacteriol 188: 8360 – 8367.en_US
dc.identifier.citedreferenceCourt, D.L., Sawitzke, J.A., and Thomason, L.C. ( 2002 ) Genetic engineering using homologous recombination. Annu Rev Genet 36: 361 – 388.en_US
dc.identifier.citedreferenceDatsenko, K.A., and Wanner, B.L. ( 2000 ) One‐step inactivation of chromosomal genes in Escherichia coli K‐12 using PCR products. Proc Natl Acad Sci USA 97: 6640 – 6645.en_US
dc.identifier.citedreferenceDatta, S., Costantino, N., Zhou, X., and Court, D.L. ( 2008 ) Identification and analysis of recombineering functions from Gram‐negative and Gram‐positive bacteria and their phages. Proc Natl Acad Sci USA 105: 1626 – 1631.en_US
dc.identifier.citedreferenceDhillon, T.S., and Dhillon, E.K. ( 1976 ) Temperate coliphage HK022. Clear plaque mutants and preliminary vegetative map. Jpn J Microbiol 20: 385 – 396.en_US
dc.identifier.citedreferenceDhillon, E.K., Dhillon, T.S., Lai, A.N., and Linn, S. ( 1980 ) Host range, immunity and antigenic properties of lambdoid coliphage HK97. J Gen Virol 50: 217 – 220.en_US
dc.identifier.citedreferenceDuckworth, D.H., Glenn, J., and McCorquodale, D.J. ( 1981 ) Inhibition of bacteriophage replication by extrachromosomal genetic elements. Microbiol Rev 45: 52 – 71.en_US
dc.identifier.citedreferenceFineran, P.C., Blower, T.R., Foulds, I.J., Humphreys, D.P., Lilley, K.S., and Salmond, G.P. ( 2009 ) The phage abortive infection system, ToxIN, functions as a protein‐RNA toxin‐antitoxin pair. Proc Natl Acad Sci USA 106: 894 – 899.en_US
dc.identifier.citedreferenceFriedman, D.I., and Court, D.L. ( 2001 ) Bacteriophage lambda: alive and well and still doing its thing. Curr Opin Microbiol 4: 201 – 207.en_US
dc.identifier.citedreferenceGottesman, S. ( 1998 ) Protecting the neighborhood: extreme measures. Proc Natl Acad Sci USA 95: 2731 – 2732.en_US
dc.identifier.citedreferenceGrangeasse, C., Cozzone, A.J., Deutscher, J., and Mijakovic, I. ( 2007 ) Tyrosine phosphorylation: an emerging regulatory device of bacterial physiology. Trends Biochem Sci 32: 86 – 94.en_US
dc.identifier.citedreferenceHendrix, R.W. ( 2006 ) Bacteriophage λ and its genetic neighborhood. In The Bacteriophages. Calendar, R. (ed.). Oxford: Oxford University Press, pp. 409 – 447.en_US
dc.identifier.citedreferenceHendrix, R.W., Roberts, J.W., Stahl, F.W., and Weisberg, R.A. ( 1983 ) Lambda II. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.en_US
dc.identifier.citedreferenceHo, Y.S., and Rosenberg, M. ( 1988 ) Structure and function of the transcription activator protein cII and its regulatory signal. In The Bacteriophages. Calendar, R. (ed.). New York: Plenum Press, pp. 725 – 756.en_US
dc.identifier.citedreferenceHoward, B.D. ( 1967 ) Phage lambda mutants deficient in r‐II exclusion. Science 158: 1588 – 1589.en_US
dc.identifier.citedreferenceHuang, A., de Grandis, S., Friesen, J., Karmali, M., Petric, M., Congi, R., and Brunton, J.L. ( 1986 ) Cloning and expression of the genes specifying Shiga‐like toxin production in Escherichia coli H19. J Bacteriol 166: 375 – 379.en_US
dc.identifier.citedreferenceJuhala, R.J., Ford, M.E., Duda, R.L., Youlton, A., Hatfull, G.F., and Hendrix, R.W. ( 2000 ) Genomic sequences of bacteriophages HK97 and HK022: pervasive mosaicism in the Lambdoid phages. J Mol Biol 299: 27 – 51.en_US
dc.identifier.citedreferenceKaper, J.B., Nataro, J.P., and Mobley, H.L. ( 2004 ) Pathogenic Escherichia coli. Nat Rev Microbiol 2: 123 – 140.en_US
dc.identifier.citedreferenceKennelly, P.J., and Potts, M. ( 1996 ) Fancy meeting you here! A fresh look at ‘prokaryotic’ protein phosphorylation. J Bacteriol 178: 4759 – 4764.en_US
dc.identifier.citedreferenceKrell, T., Lacal, J., Busch, A., Silva‐Jimenez, H., Guazzaroni, M.E., and Ramos, J.L. ( 2010 ) Bacterial sensor kinases: diversity in the recognition of environmental signals. Annu Rev Microbiol 64: 539 – 559.en_US
dc.identifier.citedreferenceLeonard, C.J., Aravind, L., and Koonin, E.V. ( 1998 ) Novel families of putative protein kinases in bacteria and archaea: evolution of the ‘eukaryotic’ protein kinase superfamily. Genome Res 8: 1038 – 1047.en_US
dc.identifier.citedreferenceLivny, J., and Friedman, D.I. ( 2004 ) Characterizing spontaneous induction of Stx encoding phages using a selectable reporter system. Mol Microbiol 51: 1691 – 1704.en_US
dc.identifier.citedreferenceMascher, T., Helmann, J.D., and Unden, G. ( 2006 ) Stimulus perception in bacterial signal‐transducing histidine kinases. Microbiol Mol Biol Rev 70: 910 – 938.en_US
dc.identifier.citedreferenceMatsushiro, A. ( 1961 ) Isolation of UV‐inducible temperate phage phi80. Biken J 4: 133 – 135.en_US
dc.identifier.citedreferenceMatz, K., Schmandt, M., and Gussin, G.N. ( 1982 ) The rex gene of bacteriophage lambda is really two genes. Genetics 102: 319 – 327.en_US
dc.identifier.citedreferenceO'Brien, A.D., Newland, J.W., Miller, S.F., Holmes, R.K., Smith, H.W., and Formal, S.B. ( 1984 ) Shiga‐like toxin‐converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. Science 226: 694 – 696.en_US
dc.identifier.citedreferenceOppenheim, A.B., and Court, D. ( 1983 ) Phage lambda's accessory genes. In Lambda II. Hendrix, R.W., Roberts, J.W., Stahl, F.W., and Weisberg, R.A. (eds). Cold Spring Harbor, NY: Cold Spring Harbor Press, pp. 251 – 277.en_US
dc.identifier.citedreferenceParma, D.H., Snyder, M., Sobolevski, S., Nawroz, M., Brody, E., and Gold, L. ( 1992 ) The Rex system of bacteriophage lambda: tolerance and altruistic cell death. Genes Dev 6: 497 – 510.en_US
dc.identifier.citedreferencePereira, S.F., Goss, L., and Dworkin, J. ( 2011 ) Eukaryote‐like serine/threonine kinases and phosphatases in bacteria. Microbiol Mol Biol Rev 75: 192 – 212.en_US
dc.identifier.citedreferencePike, A.C., Rellos, P., Niesen, F.H., Turnbull, A., Oliver, A.W., Parker, S.A., et al. ( 2008 ) Activation segment dimerization: a mechanism for kinase autophosphorylation of non‐consensus sites. EMBO J 27: 704 – 714.en_US
dc.identifier.citedreferencePlunkett, G., 3rd, Rose, D.J., Durfee, T.J., and Blattner, F.R. ( 1999 ) Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late‐gene product. J Bacteriol 181: 1767 – 1778.en_US
dc.identifier.citedreferencePtashne, M., Backman, K., Humayun, M.Z., Jeffrey, A., Maurer, R., Meyer, B., and Sauer, R.T. ( 1976 ) Autoregulation and function of a repressor in bacteriophage lambda. Science 194: 156 – 161.en_US
dc.identifier.citedreferenceReichardt, L., and Kaiser, A.D. ( 1971 ) Control of lambda repressor synthesis. Proc Natl Acad Sci USA 68: 2185 – 2189.en_US
dc.identifier.citedreferenceRobert, J., Sloan, S.B., Weisberg, R.A., Gottesman, M.E., Robledo, R., and Harbrecht, D. ( 1987 ) The remarkable specificity of a new transcription termination factor suggests that the mechanisms of termination and antitermination are similar. Cell 51: 483 – 492.en_US
dc.identifier.citedreferenceRobertson, E.S., Aggison, L.A., and Nicholson, A.W. ( 1994 ) Phosphorylation of elongation factor G and ribosomal protein S6 in bacteriophage T7‐infected Escherichia coli. Mol Microbiol 11: 1045 – 1057.en_US
dc.identifier.citedreferenceRoskoski, R., Jr ( 2004 ) Src protein‐tyrosine kinase structure and regulation. Biochem Biophys Res Commun 324: 1155 – 1164.en_US
dc.identifier.citedreferenceSambrook, J., Fritsch, E., and Maniatis, T. ( 1989 ) Molecular Cloning, A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.en_US
dc.identifier.citedreferenceSchumacher, M.A., Piro, K.M., Xu, W., Hansen, S., Lewis, K., and Brennan, R.G. ( 2009 ) Molecular mechanisms of HipA‐mediated multidrug tolerance and its neutralization by HipB. Science 323: 396 – 401.en_US
dc.identifier.citedreferenceScotland, S.M., Smith, H.R., Willshaw, G.A., and Rowe, B. ( 1983 ) Vero cytotoxin production in strain of Escherichia coli is determined by genes carried on bacteriophage. Lancet 2: 216.en_US
dc.identifier.citedreferenceShatzman, A., Ho, Y.‐S., and Rosenberg, M. ( 1983 ) Use of phage lambda signals to obtain efficient expression of genes in Escherichia Coli. In Experimental Manipulation of Gene Expression. Inouye, M. (ed.). Orlando: Academic Press Inc, pp. 1 – 14.en_US
dc.identifier.citedreferenceShub, D.A. ( 1994 ) Bacterial viruses. Bacterial altruism? Curr Biol 4: 555 – 556.en_US
dc.identifier.citedreferenceSmith, J.A., Francis, S.H., and Corbin, J.D. ( 1993 ) Autophosphorylation: a salient feature of protein kinases. Mol Cell Biochem 127‐128: 51 – 70.en_US
dc.identifier.citedreferenceSnyder, L. ( 1995 ) Phage‐exclusion enzymes: a bonanza of biochemical and cell biology reagents? Mol Microbiol 15: 415 – 420.en_US
dc.identifier.citedreferenceSussman, R., and Jacob, F. ( 1962 ) Sur un systeme de repression thermosensible chez le bacteriophage lambda d' Escherichia coli. C R Acad Sci Paris 254: 1517 – 1519.en_US
dc.identifier.citedreferenceTyler, J.S., and Friedman, D.I. ( 2004 ) Characterization of a eukaryotic‐like tyrosine protein kinase expressed by the Shiga toxin‐encoding bacteriophage 933W. J Bacteriol 186: 3472 – 3479.en_US
dc.identifier.citedreferenceTyler, J.S., Mills, M.J., and Friedman, D.I. ( 2004 ) The operator and early promoter region of the Shiga toxin type 2‐encoding bacteriophage 933W and control of toxin expression. J Bacteriol 186: 7670 – 7679.en_US
dc.identifier.citedreferenceTyler, J.S., Livny, J., and Friedman, D.I. ( 2005 ) Lambdoid phages and Shiga toxin. In Phage: Role in Pathogenesis and Biotechnology. Waldor, M.K., Friedman, D.I., and Adhya, S. (eds). Washington, DC: ASM Press, pp. 131 – 164.en_US
dc.identifier.citedreferenceVan Melderen, L., and Saavedra De Bast, M. ( 2009 ) Bacterial toxin‐antitoxin systems: more than selfish entities? PLoS Genet 5: e1000437.en_US
dc.identifier.citedreferenceWest, S.A., and Gardner, A. ( 2010 ) Altruism, spite, and greenbeards. Science 327: 1341 – 1344.en_US
dc.identifier.citedreferenceWulff, D.L., and Rosenberg, M. ( 1983 ) Establishment of repressor synthesis. In Lambda II. Hendrix, R.W., Roberts, J.W., Stahl, F.W., and Weisberg, R.A. (eds). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, pp. 53 – 73.en_US
dc.identifier.citedreferenceYamamoto, N., Ushijima, N., Gemski, P., and Baron, L.S. ( 1977 ) Genetic studies of hybrids between coliphage lambda and salmonella phage P22: genetic analysis of the P22‐lambda hybrid class. Mol Gen Genet 155: 117 – 121.en_US
dc.identifier.citedreferenceYamamoto, N., Wohlhieter, J.A., Gemski, P., and Baron, L.S. ( 1978 ) lambdaimm P22dis: a hybrid of coliphage lambda with both immunity regions of Salmonella phage P22. Mol Gen Genet 166: 233 – 243.en_US
dc.identifier.citedreferenceYarmolinsky, M.B. ( 1971 ) Making and Joining DNA Ends. In The Bacteriophage Lambda. Hershey, A.D. (ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, pp. 97 – 109.en_US
dc.identifier.citedreferenceYarmolinsky, M.B. ( 1995 ) Programmed cell death in bacterial populations. Science 267: 836 – 837.en_US
dc.identifier.citedreferenceYu, D., Ellis, H.M., Lee, E.C., Jenkins, N.A., Copeland, N.G., and Court, D.L. ( 2000 ) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97: 5978 – 5983.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.