Show simple item record

Human umbilical cord mesenchymal stromal cells in a sandwich approach for osteochondral tissue engineering

dc.contributor.authorWang, Liminen_US
dc.contributor.authorZhao, Liangen_US
dc.contributor.authorDetamore, Michael S.en_US
dc.date.accessioned2011-11-10T15:36:08Z
dc.date.available2012-12-03T21:17:30Zen_US
dc.date.issued2011-10en_US
dc.identifier.citationWang, Limin; Zhao, Liang; Detamore, Michael S. (2011). "Human umbilical cord mesenchymal stromal cells in a sandwich approach for osteochondral tissue engineering." Journal of Tissue Engineering and Regenerative Medicine 5(9): 712-721. <http://hdl.handle.net/2027.42/87014>en_US
dc.identifier.issn1932-6254en_US
dc.identifier.issn1932-7005en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87014
dc.description.abstractCell sources and tissue integration between cartilage and bone regions are critical to successful osteochondral regeneration. In this study, human umbilical cord mesenchymal stromal cells (hUCMSCs), derived from Wharton's jelly, were introduced to the field of osteochondral tissue engineering and a new strategy for osteochondral integration was developed by sandwiching a layer of cells between chondrogenic and osteogenic constructs before suturing them together. Specifically, hUCMSCs were cultured in biodegradable poly‐ L ‐lactic acid scaffolds for 3 weeks in either chondrogenic or osteogenic medium to differentiate cells toward cartilage or bone lineages, respectively. A highly concentrated cell solution containing undifferentiated hUCMSCs was pasted onto the surface of the bone layer at week 3 and the two layers were then sutured together to form an osteochondral composite for another 3 week culture period. Chondrogenic and osteogenic differentiation was initiated during the first 3 weeks, as evidenced by the expression of type II collagen and runt‐related transcription factor 2 genes, respectively, and continued with the increase of extracellular matrix during the last 3 weeks. Histological and immunohistochemical staining, such as for glycosaminoglycans, type I collagen and calcium, revealed better integration and transition of these matrices between two layers in the composite group containing sandwiched cells compared to other control composites. These results suggest that hUCMSCs may be a suitable cell source for osteochondral regeneration, and the strategy of sandwiching cells between two layers may facilitate scaffold and tissue integration. Copyright © 2010 John Wiley & Sons, Ltd.en_US
dc.publisherJohn Wiley & Sons, Ltd.en_US
dc.subject.otherUmbilical Corden_US
dc.subject.otherStromal Cellsen_US
dc.subject.otherOsteochondral Tissue Engineeringen_US
dc.subject.otherIntegrationen_US
dc.titleHuman umbilical cord mesenchymal stromal cells in a sandwich approach for osteochondral tissue engineeringen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherDepartment of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045, USAen_US
dc.contributor.affiliationotherDepartment of Chemical and Petroleum Engineering, University of Kansas, 4132 Learned Hall, 1530 W 15th Street, Lawrence, KS 66045, USA.en_US
dc.identifier.pmid21953869en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87014/1/370_ftp.pdf
dc.identifier.doi10.1002/term.370en_US
dc.identifier.sourceJournal of Tissue Engineering and Regenerative Medicineen_US
dc.identifier.citedreferenceAlhadlaq A, Elisseeff JH, Hong L, et al. 2004; Adult stem cell‐driven genesis of human‐shaped articular condyle. Ann Biomed Eng 32: 911 – 923.en_US
dc.identifier.citedreferenceAlhadlaq A, Mao JJ. 2003; Tissue‐engineered neogenesis of human‐shaped mandibular condyle from rat mesenchymal stem cells. J Dent Res 82: 951 – 956.en_US
dc.identifier.citedreferenceAlhadlaq A, Mao JJ. 2005; Tissue‐engineered osteochondral constructs in the shape of an articular condyle. J Bone Joint Surg Am 87: 936 – 944.en_US
dc.identifier.citedreferenceAngele P, Kujat R, Nerlich M, et al. 1999; Engineering of osteochondral tissue with bone marrow mesenchymal progenitor cells in a derivatized hyaluronan–gelatin composite sponge. Tissue Eng 5: 545 – 554.en_US
dc.identifier.citedreferenceBailey MM, Wang L, Bode CJ, et al. 2007; A comparison of human umbilical cord matrix stem cells and temporomandibular joint condylar chondrocytes for tissue engineering temporomandibular joint condylar cartilage. Tissue Eng 13: 2003 – 2010.en_US
dc.identifier.citedreferenceCao T, Ho KH, Teoh SH. 2003; Scaffold design and in vitro study of osteochondral coculture in a three‐dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling. Tissue Eng 9 ( suppl 1 ): S103 – 112.en_US
dc.identifier.citedreferenceDetamore MS, Athanasiou KA. 2005; Use of a rotating bioreactor toward tissue engineering the temporomandibular joint disc. Tissue Eng 11: 1188 – 1197.en_US
dc.identifier.citedreferenceDetamore MS, Orfanos JG, Almarza AJ, et al. 2005; Quantitative analysis and comparative regional investigation of the extracellular matrix of the porcine temporomandibular joint disc. Matrix Biol 24: 45 – 57.en_US
dc.identifier.citedreferenceFu YS, Cheng YC, Lin MY, et al. 2006; Conversion of human umbilical cord mesenchymal stem cells in Wharton's jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells 24: 115 – 124.en_US
dc.identifier.citedreferenceGao J, Dennis JE, Solchaga LA, et al. 2001; Tissue‐engineered fabrication of an osteochondral composite graft using rat bone marrow‐derived mesenchymal stem cells. Tissue Eng 7: 363 – 371.en_US
dc.identifier.citedreferenceGrayson WL, Chao PH, Marolt D, et al. 2008; Engineering custom‐designed osteochondral tissue grafts. Trends Biotechnol 26: 181 – 189.en_US
dc.identifier.citedreferenceGuo X, Park H, Liu G, et al. 2009; In vitro generation of an osteochondral construct using injectable hydrogel composites encapsulating rabbit marrow mesenchymal stem cells. Biomaterials 30: 2741 – 2752.en_US
dc.identifier.citedreferenceGuo X, Park H, Young S, et al. 2010; Repair of osteochondral defects with biodegradable hydrogel composites encapsulating marrow mesenchymal stem cells in a rabbit model. Acta Biomater 6: 39 – 47.en_US
dc.identifier.citedreferenceIshaug‐Riley SL, Okun LE, Prado G, et al. 1999; Human articular chondrocyte adhesion and proliferation on synthetic biodegradable polymer films. Biomaterials 20: 2245 – 2256.en_US
dc.identifier.citedreferenceKarahuseyinoglu S, Cinar O, Kilic E, et al. 2007; Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 25: 319 – 331.en_US
dc.identifier.citedreferenceKasukawa Y, Miyakoshi N, Mohan S. 2004; The anabolic effects of GH/IGF system on bone. Curr Pharm Des 10: 2577 – 2592.en_US
dc.identifier.citedreferenceLivak KJ, Schmittgen TD. 2001; Analysis of relative gene expression data using real‐time quantitative PCR and the 2( −ΔΔ C t ) method. Methods 25: 402 – 408.en_US
dc.identifier.citedreferenceMalafaya PB, Reis RL. 2009; Bilayered chitosan‐based scaffolds for osteochondral tissue engineering: influence of hydroxyapatite on in vitro cytotoxicity and dynamic bioactivity studies in a specific double‐chamber bioreactor. Acta Biomater 5: 644 – 660.en_US
dc.identifier.citedreferenceMrosek EH, Schagemann JC, Chung HW, et al. 2010; Porous tantalum and poly‐ε‐caprolactone biocomposites for osteochondral defect repair: preliminary studies in rabbits. J Orthop Res 28: 141 – 148.en_US
dc.identifier.citedreferenceO'Shea TM, Miao X. 2008; Bilayered scaffolds for osteochondral tissue engineering. Tissue Eng B Rev 14: 447 – 464.en_US
dc.identifier.citedreferenceRichardson SM, Curran JM, Chen R, et al. 2006; The differentiation of bone marrow mesenchymal stem cells into chondrocyte‐like cells on poly‐ L ‐lactic acid (PLLA) scaffolds. Biomaterials 27: 4069 – 4078.en_US
dc.identifier.citedreferenceSarugaser R, Lickorish D, Baksh D, et al. 2005; Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23: 220 – 229.en_US
dc.identifier.citedreferenceSchaefer D, Martin I, Jundt G, et al. 2002; Tissue‐engineered composites for the repair of large osteochondral defects. Arthritis Rheum 46: 2524 – 2534.en_US
dc.identifier.citedreferenceSchaefer D, Martin I, Shastri P, et al. 2000; In vitro generation of osteochondral composites. Biomaterials 21: 2599 – 2606.en_US
dc.identifier.citedreferenceStevens MM, Qanadilo HF, Langer R, et al. 2004; A rapid‐curing alginate gel system: utility in periosteum‐derived cartilage tissue engineering. Biomaterials 25: 887 – 894.en_US
dc.identifier.citedreferenceter Brugge PJ, Jansen JA. 2002; In vitro osteogenic differentiation of rat bone marrow cells subcultured with and without dexamethasone. Tissue Eng 8: 321 – 331.en_US
dc.identifier.citedreferenceTuli R, Nandi S, Li WJ, et al. 2004; Human mesenchymal progenitor cell‐based tissue engineering of a single‐unit osteochondral construct. Tissue Eng 10: 1169 – 1179.en_US
dc.identifier.citedreferenceWakitani S, Goto T, Pineda SJ, et al. 1994; Mesenchymal cell‐based repair of large, full‐thickness defects of articular cartilage. J Bone Joint Surg Am 76: 579 – 592.en_US
dc.identifier.citedreferenceWang HS, Hung SC, Peng ST, et al. 2004; Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells 22: 1330 – 1337.en_US
dc.identifier.citedreferenceWang L, Detamore MS. 2009; Insulin‐like growth factor‐I improves chondrogenesis of predifferentiated human umbilical cord mesenchymal stromal cells. J Orthop Res 27: 1109 – 1115.en_US
dc.identifier.citedreferenceWang L, Seshareddy K, Weiss ML, et al. 2009a; Effect of initial seeding density on human umbilical cord mesenchymal stromal cells for fibrocartilage tissue engineering. Tissue Eng A 15: 1009 – 1017.en_US
dc.identifier.citedreferenceWang L, Singh M, Bonewald LF, et al. 2009b; Signalling strategies for osteogenic differentiation of human umbilical cord mesenchymal stromal cells for 3D bone tissue engineering. J Tissue Eng Regen Med 3: 398 – 404.en_US
dc.identifier.citedreferenceWang L, Tran I, Seshareddy K, et al. 2009c; A comparison of human bone marrow‐derived mesenchymal stem cells and human umbilical cord‐derived mesenchymal stromal cells for cartilage tissue engineering. Tissue Eng A 15: 2259 – 2266.en_US
dc.identifier.citedreferenceWeiss ML, Troyer DL. 2006; Stem cells in the umbilical cord. Stem Cell Rev 2: 155 – 162.en_US
dc.identifier.citedreferenceWeng Y, Cao Y, Silva CA, et al. 2001; Tissue‐engineered composites of bone and cartilage for mandible condylar reconstruction. J Oral Maxillofac Surg 59: 185 – 190.en_US
dc.identifier.citedreferenceZwingmann J, Mehlhorn AT, Sudkamp N, et al. 2007; Chondrogenic differentiation of human articular chondrocytes differs in biodegradable PGA/PLA scaffolds. Tissue Eng 13: 2335 – 2343.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.