Show simple item record

Autosomal dominant inheritance of a predisposition to thoracic aortic aneurysms and dissections and intracranial saccular aneurysms

dc.contributor.authorRegalado, Ellenen_US
dc.contributor.authorMedrek, Sarahen_US
dc.contributor.authorTran‐fadulu, Vanen_US
dc.contributor.authorGuo, Dong‐chuanen_US
dc.contributor.authorPannu, Hariyadarshien_US
dc.contributor.authorGolabbakhsh, Hosseinen_US
dc.contributor.authorSmart, Suzanneen_US
dc.contributor.authorChen, Julia H.en_US
dc.contributor.authorShete, Sanjayen_US
dc.contributor.authorKim, Dong H.en_US
dc.contributor.authorStern, Ralphen_US
dc.contributor.authorBraverman, Alan C.en_US
dc.contributor.authorMilewicz, Dianna M.en_US
dc.date.accessioned2011-11-10T15:36:14Z
dc.date.available2012-11-02T18:56:47Zen_US
dc.date.issued2011-09en_US
dc.identifier.citationRegalado, Ellen; Medrek, Sarah; Tran‐fadulu, Van ; Guo, Dong‐chuan ; Pannu, Hariyadarshi; Golabbakhsh, Hossein; Smart, Suzanne; Chen, Julia H.; Shete, Sanjay; Kim, Dong H.; Stern, Ralph; Braverman, Alan C.; Milewicz, Dianna M. (2011). "Autosomal dominant inheritance of a predisposition to thoracic aortic aneurysms and dissections and intracranial saccular aneurysms ." American Journal of Medical Genetics Part A 155(9): 2125-2130. <http://hdl.handle.net/2027.42/87019>en_US
dc.identifier.issn1552-4825en_US
dc.identifier.issn1552-4833en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87019
dc.description.abstractA genetic predisposition for thoracic aortic aneurysms and dissections (TAAD) can be inherited in an autosomal dominant manner with decreased penetrance and variable expression. Four genes identified to date for familial TAAD account for approximately 20% of the heritable predisposition. In a cohort of 514 families with two or more members with presumed autosomal dominant TAAD, 48 (9.3%) families have one or more members who were at 50% risk to inherit the presumptive gene causing TAAD had an intracranial vascular event. In these families, gender is significantly associated with disease presentation ( P  < 0.001), with intracranial events being more common in women (65.4%) while TAAD events occurred more in men (64.2%,). Twenty‐nine of these families had intracranial aneurysms (ICA) that could not be designated as saccular or fusiform due to incomplete data. TGFBR1 , TGFBR2 , and ACTA2 mutations were found in 4 families with TAAD and predominantly fusiform ICAs. In 15 families, of which 14 tested negative for 3 known TAAD genes, 17 family members who were at risk for inheriting TAAD had saccular ICAs. In 2 families, women who harbored the genetic mutation causing TAAD had ICAs. In 2 additional families, intracranial, thoracic and abdominal aortic aneurysms were observed. This study documents the autosomal dominant inheritance of TAADs with saccular ICAs, a previously recognized association that has not been adequately characterized as heritable. In these families, routine cerebral and aortic imaging for at risk members could prevent cerebral hemorrhages and aortic dissections. © 2011 Wiley‐Liss, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherThoracic Aortic Aneurysmen_US
dc.subject.otherAortic Dissectionen_US
dc.subject.otherFusiform Intracranial Aneurysmsen_US
dc.subject.otherSaccular Intracranial Aneurysmsen_US
dc.subject.otherAbdominal Aortic Aneurysmen_US
dc.subject.otherGenetic Counselingen_US
dc.titleAutosomal dominant inheritance of a predisposition to thoracic aortic aneurysms and dissections and intracranial saccular aneurysmsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Internal Medicine, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherDepartment of Internal Medicine and Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texasen_US
dc.contributor.affiliationotherDepartment of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, Texasen_US
dc.contributor.affiliationotherCardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missourien_US
dc.contributor.affiliationotherDivision of Medical Genetics, Department of Internal Medicine, 6431 Fannin, MSB 6.100, Houston, TX 77030.en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87019/1/34050_ftp.pdf
dc.identifier.doi10.1002/ajmg.a.34050en_US
dc.identifier.sourceAmerican Journal of Medical Genetics Part Aen_US
dc.identifier.citedreferenceDe BM, Perusse L, Cantin L, Bouchard JM, Mathieu J. 1996. A study of inbreeding and kinship in intracranial aneurysms in the Saguenay Lac‐Saint‐Jean region (Quebec, Canada). Ann Hum Genet 60: 99 – 104.en_US
dc.identifier.citedreferenceForoud T, Sauerbeck L, Brown R, Anderson C, Woo D, Kleindorfer D, Flaherty ML, Deka R, Hornung R, Meissner I, Bailey‐Wilson JE, Rouleau G, Connolly ES, Lai D, Koller DL, Huston J III, Broderick JP. 2008. Genome screen to detect linkage to intracranial aneurysm susceptibility genes: The Familial Intracranial Aneurysm (FIA) study. Stroke 39: 1434 – 1440.en_US
dc.identifier.citedreferenceGuo D, Hasham S, Kuang SQ, Vaughan CJ, Boerwinkle E, Chen H, Abuelo D, Dietz HC, Basson CT, Shete SS, Milewicz DM. 2001. Familial thoracic aortic aneurysms and dissections: Genetic heterogeneity with a major locus mapping to 5q13‐14. Circulation 103: 2461 – 2468.en_US
dc.identifier.citedreferenceGuo DC, Pannu H, Papke CL, Yu RK, Avidan N, Bourgeois S, Estrera AL, Safi HJ, Sparks E, Amor D, Ades L, McConnell V, Willoughby CE, Abuelo D, Willing M, Lewis RA, Kim DH, Scherer S, Tung PP, Ahn C, Buja LM, Raman CS, Shete S, Milewicz DM. 2007. Mutations in smooth muscle alpha‐actin ( ACTA2 ) lead to thoracic aortic aneurysms and dissections. Nat Genet 39: 1488 – 1493.en_US
dc.identifier.citedreferenceGuo DC, Papke CL, Tran‐Fadulu V, Regalado ES, Avidan N, Johnson RJ, Kim DH, Pannu H, Willing MC, Sparks E, Pyeritz RE, Singh MN, Dalman RL, Grotta JC, Marian AJ, Boerwinkle EA, Frazier LQ, LeMaire SA, Coselli JS, Estrera AL, Safi HJ, Veeraraghavan S, Muzny DM, Wheeler DA, Willerson JT, Yu RK, Shete SS, Scherer SE, Raman CS, Buja LM, Milewicz DM. 2009. Mutations in smooth muscle alpha‐actin (ACTA2) cause coronary artery disease, stroke, and moyamoya disease, along with thoracic aortic disease. Am J Hum Genet 84: 617 – 627.en_US
dc.identifier.citedreferenceHasham SN, Willing MC, Guo DC, Muilenburg A, He RM, Tran VT, Scherer SE, Shete SS, Milewicz DM. 2003. Mapping a locus for familial thoracic aortic aneurysms and dissections (TAAD2) to 3 p24‐25. Circulation 107: 3184 – 3190.en_US
dc.identifier.citedreferenceHelgadottir A, Thorleifsson G, Magnusson KP, Gretarsdottir S, Steinthorsdottir V, Manolescu A, Jones GT, Rinkel GJ, Blankensteijn JD, Ronkainen A, Jaaskelainen JE, Kyo Y, Lenk GM, Sakalihasan N, Kostulas K, Gottsater A, Flex A, Stefansson H, Hansen T, Andersen G, Weinsheimer S, Borch‐Johnsen K, Jorgensen T, Shah SH, Quyyumi AA, Granger CB, Reilly MP, Austin H, Levey AI, Vaccarino V, Palsdottir E, Walters GB, Jonsdottir T, Snorradottir S, Magnusdottir D, Gudmundsson G, Ferrell RE, Sveinbjornsdottir S, Hernesniemi J, Niemela M, Limet R, Andersen K, Sigurdsson G, Benediktsson R, Verhoeven EL, Teijink JA, Grobbee DE, Rader DJ, Collier DA, Pedersen O, Pola R, Hillert J, Lindblad B, Valdimarsson EM, Magnadottir HB, Wijmenga C, Tromp G, Baas AF, Ruigrok YM, Van Rij AM, Kuivaniemi H, Powell JT, Matthiasson SE, Gulcher JR, Thorgeirsson G, Kong A, Thorsteinsdottir U, Stefansson K. 2008. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet 40: 217 – 224.en_US
dc.identifier.citedreferenceKhau VK, Wolf JE, Mathieu F, Zhu L, Salve N, Lalande A, Bonnet C, Lesca G, Plauchu H, Dellinger A, Nivelon‐Chevallier A, Brunotte F, Jeunemaitre X. 2004. Familial thoracic aortic aneurysm/dissection with patent ductus arteriosus: Genetic arguments for a particular pathophysiological entity. Eur J Hum Genet 12: 173 – 180.en_US
dc.identifier.citedreferenceKim DH, Van Ginhoven G, Milewicz DM. 2005. Evidence supporting a common genetic basis for cerebral and abdominal aortic aneurysms in a subset of families. Neurosurgery 56: 655 – 661.en_US
dc.identifier.citedreferenceKissela BM, Sauerbeck L, Woo D, Khoury J, Carrozzella J, Pancioli A, Jauch E, Moomaw CJ, Shukla R, Gebel J, Fontaine R, Broderick J. 2002. Subarachnoid hemorrhage: A preventable disease with a heritable component. Stroke 33: 1321 – 1326.en_US
dc.identifier.citedreferenceLoeys BL, Schwarze U, Holm T, Callewaert BL, Thomas GH, Pannu H, De Backer JF, Oswald GL, Symoens S, Manouvrier S, Roberts AE, Faravelli F, Greco MA, Pyeritz RE, Milewicz DM, Coucke PJ, Cameron DE, Braverman AC, Byers PH, De Paepe AM, Dietz HC. 2006. Aneurysm syndromes caused by mutations in the TGF‐beta receptor. N Engl J Med 355: 788 – 798.en_US
dc.identifier.citedreferenceLoscalzo ML, Goh DL, Loeys B, Kent KC, Spevak PJ, Dietz HC. 2007. Familial thoracic aortic dilation and bicommissural aortic valve: A prospective analysis of natural history and inheritance. Am J Med Genet Part A 143A: 1960 – 1967.en_US
dc.identifier.citedreferenceMilewicz DM, Chen H, Park ES, Petty EM, Zaghi H, Shashidhar G, Willing M, Patel V. 1998. Reduced penetrance and variable expressivity of familial thoracic aortic aneurysms/dissections. Am J Cardiol 82: 474 – 479.en_US
dc.identifier.citedreferencePannu H, Fadulu V, Chang J, Lafont A, Hasham SN, Sparks E, Giampietro PF, Zaleski C, Estrera AL, Safi HJ, Shete S, Willing MC, Raman CS, Milewicz DM. 2005. Mutations in transforming growth factor‐beta receptor type II cause familial thoracic aortic aneurysms and dissections. Circulation 112: 513 – 520.en_US
dc.identifier.citedreferencePannu H, Tran‐Fadulu V, Papke CL, Scherer S, Liu Y, Presley C, Guo D, Estrera AL, Safi HJ, Brasier AR, Vick GW, Marian AJ, Raman CS, Buja LM, Milewicz DM. 2007. MYH11 mutations result in a distinct vascular pathology driven by insulin‐like growth factor 1 and angiotensin II. Hum Mol Genet 16: 3453 – 3462.en_US
dc.identifier.citedreferenceRing T, Spiegelhalter D. 2007. Risk of intracranial aneurysm bleeding in autosomal‐dominant polycystic kidney disease. Kidney Int 72: 1400 – 1402.en_US
dc.identifier.citedreferenceRinkel GJ, Djibuti M, Algra A, van Gijn J. 1998. Prevalence and risk of rupture of intracranial aneurysms: A systematic review. Stroke 29: 251 – 256.en_US
dc.identifier.citedreferenceSchievink WI. 2004. Cerebrovascular involvement in Ehlers–Danlos syndrome. Curr Treat Options Cardiovasc Med 6: 231 – 236.en_US
dc.identifier.citedreferenceTran‐Fadulu VT, Pannu H, Kim DH, Vick GW III, Lonsford CM, Lafont AL, Boccalandro C, Smart S, Peterson KL, Zenger‐Hain J, Willing MC, Coselli J, LeMaire SA, Ahn C, Byers PH, Milewicz DM. 2009. Analysis of multigenerational families with thoracic aortic aneurysms and dissections due to TGFBR1 or TGFBR2 mutations. J Med Genet 46: 607 – 613.en_US
dc.identifier.citedreferenceVaughan CJ, Casey M, He J, Veugelers M, Henderson K, Guo D, Campagna R, Roman MJ, Milewicz DM, Devereux RB, Basson CT. 2001. Identification of a chromosome 11q23.2‐q24 locus for familial aortic aneurysm disease, a genetically heterogeneous disorder. Circulation 103: 2469 – 2475.en_US
dc.identifier.citedreferenceVerlaan DJ, Dube MP, St‐Onge J, Noreau A, Roussel J, Satge N, Wallace MC, Rouleau GA. 2006. A new locus for autosomal dominant intracranial aneurysm, ANIB4, maps to chromosome 5p15.2‐14.3. J Med Genet 43: e31.en_US
dc.identifier.citedreferenceWang PS, Longstreth WT Jr, Koepsell TD. 1995. Subarachnoid hemorrhage and family history. A population‐based case–control study. Arch Neurol 52: 202 – 204.en_US
dc.identifier.citedreferenceZhu L, Vranckx R, Khau VKP, Lalande A, Boisset N, Mathieu F, Wegman M, Glancy L, Gasc JM, Brunotte F, Bruneval P, Wolf JE, Michel JB, Jeunemaitre X. 2006. Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nat Genet 38: 343 – 349.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.