Show simple item record

Remarkably High Reactivity of Pd(OAc) 2 /Pyridine Catalysts: Nondirected CH Oxygenation of Arenes

dc.contributor.authorEmmert, Marion H.en_US
dc.contributor.authorCook, Amanda K.en_US
dc.contributor.authorXie, Yushu J.en_US
dc.contributor.authorSanford, Melanie S.en_US
dc.date.accessioned2011-11-10T15:36:21Z
dc.date.available2012-11-02T18:56:47Zen_US
dc.date.issued2011-09-26en_US
dc.identifier.citationEmmert, Marion H.; Cook, Amanda K.; Xie, Yushu J.; Sanford, Melanie S. (2011). "Remarkably High Reactivity of Pd(OAc) 2 /Pyridine Catalysts: Nondirected CH Oxygenation of Arenes ." Angewandte Chemie 123(40): 9581-9584. <http://hdl.handle.net/2027.42/87023>en_US
dc.identifier.issn0044-8249en_US
dc.identifier.issn1521-3757en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87023
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherC‐H‐Aktivierungen_US
dc.subject.otherHomogene Katalyseen_US
dc.subject.otherN‐Ligandenen_US
dc.subject.otherOxidationenen_US
dc.subject.otherPalladiumen_US
dc.titleRemarkably High Reactivity of Pd(OAc) 2 /Pyridine Catalysts: Nondirected CH Oxygenation of Arenesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109 (USA)en_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109 (USA)en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87023/1/9581_ftp.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87023/2/ange_201103327_sm_miscellaneous_information.pdf
dc.identifier.doi10.1002/ange.201103327en_US
dc.identifier.sourceAngewandte Chemieen_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceT. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147 – 1169;en_US
dc.identifier.citedreferenceP. Sehnal, R. J. K. Taylor, I. J. S. Fairlamb, Chem. Rev. 2010, 110, 824 – 889;en_US
dc.identifier.citedreferenceK. Muñiz, Angew. Chem. 2009, 121, 9576 – 9588; Angew. Chem. Int. Ed. 2009, 48, 9412 – 9423.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceD. A. Alonso, C. Najera, I. M. Pastor, M. Yus, Chem. Eur. J. 2010, 16, 5274 – 5284;en_US
dc.identifier.citedreferenceJ. Tsuji, Synthesis 1990, 739 – 749.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceP. Y. Choy, C. P. Lau, F. Y. Kwong, J. Org. Chem. 2011, 76, 80 – 84;en_US
dc.identifier.citedreferenceI. Mutule, E. Suna, K. Olofsson, B. Pelcman, J. Org. Chem. 2009, 74, 7195 – 7198;en_US
dc.identifier.citedreferenceG.‐W. Wang, T.‐T. Yuan, X.‐L. Wu, J. Org. Chem. 2008, 73, 4717 – 4720;en_US
dc.identifier.citedreferenceT. Yoneyama, R. H. Crabtree, J. Mol. Catal. A 1996, 108, 35 – 40.en_US
dc.identifier.citedreferenceF. Shibahara, S. Kinoshita, K. Nozaki, Org. Lett. 2004, 6, 2437 – 2439;en_US
dc.identifier.citedreferenceM. Muehlhoefer, T. Strassner, W. A. Hermann, Angew. Chem. 2002, 114, 1817 – 1819; Angew. Chem. Int. Ed. 2002, 41, 1745 – 1747;en_US
dc.identifier.citedreferenceT. Jintoku, K. Takai, Y. Fujiwara, Y. Fuchita, K. Hiraki, Bull. Chem. Soc. Jpn. 1990, 63, 438 – 441;en_US
dc.identifier.citedreferenceT. Jintoku, H. Taniguchi, Y. Fujiwara, Chem. Lett. 1987, 1865 – 1868;en_US
dc.identifier.citedreferenceL. M. Stock, K. Tse, L. J. Vorvick, S. A. Walstrum, J. Org. Chem. 1981, 46, 1757 – 1759;en_US
dc.identifier.citedreferenceP. M. Henry, J. Org. Chem. 1971, 36, 1886 – 1890;en_US
dc.identifier.citedreferenceT. Tisue, W. J. Downs, J. Chem. Soc. D 1969, 410a;en_US
dc.identifier.citedreferenceJ. M. Davidson, C. Triggs, Chem. Ind. 1966, 457.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceY. Liu, K. Murata, M. Inaba, J. Mol. Catal. A 2006, 256, 247 – 255;en_US
dc.identifier.citedreferenceH. A. Burton, I. V. Kozhevnikov, J. Mol. Catal. A 2002, 185, 285 – 290.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceL. Eberson, L. Jönsson, Liebigs Ann. Chem. 1977, 233 – 241;en_US
dc.identifier.citedreferenceL. Eberson, L. Jönsson, Acta Chem. Scand. 1976, 30, 361 – 364;en_US
dc.identifier.citedreferenceL. Eberson, L. Jönsson, J. Chem. Soc. Chem. Commun. 1974, 885 – 886;en_US
dc.identifier.citedreferenceL. Eberson, L. Jönsson, Acta Chem. Scand. 1974, 28, 771 – 776.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceT. W. Lyons, K. L. Hull, M. S. Sanford, J. Am. Chem. Soc. 2011, 133, 4455 – 4464;en_US
dc.identifier.citedreferenceA. J. Hickman, M. S. Sanford, ACS Catal. 2011, 1, 170 – 174;en_US
dc.identifier.citedreferenceM. H. Emmert, J. B. Gary, J. M. Villalobos, M. S. Sanford, Angew. Chem. 2010, 122, 6020 – 6022; Angew. Chem. Int. Ed. 2010, 49, 5884 – 5886;en_US
dc.identifier.citedreferenceN. R. Deprez, D. Kalyani, A. Krause, M. S. Sanford, J. Am. Chem. Soc. 2006, 128, 4972 – 4973.en_US
dc.identifier.citedreference[(pyr*) 2 Pd(X) 2 ] complexes (pyr*=monodentate pyridine derivatives) can be effective catalysts for certain Pd II/0 ‐catalyzed undirected arene CH functionalization reactions:en_US
dc.identifier.citedreferenceY. Izawa, S. S. Stahl, Adv. Synth. Catal. 2010, 352, 3223 – 3229;en_US
dc.identifier.citedreferenceC. Wang, S. Rakshit, F. Glorius, J. Am. Chem. Soc. 2010, 132, 14006 – 14008;en_US
dc.identifier.citedreferenceY.‐H. Zhang, B.‐F. Shi, J.‐Q. Yu, J. Am. Chem. Soc. 2009, 131, 5072 – 5074.en_US
dc.identifier.citedreferenceSeveral literature reports (e.g., see Refs. [8a,c, 10, 11]) have implicated monopyridine Pd II complexes [(pyr*)PdX 2 ] as reactive intermediates in Pd II/0 ‐catalyzed oxidation reactions.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceD. R. Stuart, K. Fagnou, Science 2007, 316, 1172 – 1175;en_US
dc.identifier.citedreferenceE. M. Ferreira, B. M. Stoltz, J. Am. Chem. Soc. 2003, 125, 9578 – 9579;en_US
dc.identifier.citedreferenceK. Mikami, M. Hatano, M. Terada, Chem. Lett. 1999, 28, 55 – 56.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceX. Ye, G. Liu, B. V. Popp, S. S. Stahl, J. Org. Chem. 2011, 76, 1031 – 1044;en_US
dc.identifier.citedreferenceB. V. Popp, S. S. Stahl, Chem. Eur. J. 2009, 15, 2915 – 2922;en_US
dc.identifier.citedreferenceR. M. Trend, Y. K. Ramtohul, B. M. Stoltz, J. Am. Chem. Soc. 2005, 127, 17778 – 17788;en_US
dc.identifier.citedreferenceM. J. Schultz, R. S. Adler, W. Zierkiewicz, T. Privalov, M. S. Sigman, J. Am. Chem. Soc. 2005, 127, 8499 – 8507;en_US
dc.identifier.citedreferenceB. A. Steinhoff, I. A. Guzei, S. S. Stahl, J. Am. Chem. Soc. 2004, 126, 11268 – 11278;en_US
dc.identifier.citedreferenceB. A. Steinhoff, S. S. Stahl, Org. Lett. 2002, 4, 4179 – 4181.en_US
dc.identifier.citedreferenceThe reactivity of the catalyst system Pd(OAc) 2 /pyr 1:1 surpasses by far the reactivity observed when 2,2′‐bipyridine or a pyridinium‐substituted bipyridine analogue are used as ligands (see Ref. [7c]).en_US
dc.identifier.citedreferenceYields are based on the oxidant PhI(OAc) 2, which has been shown to decompose upon heating through metal‐catalyzed ( V. V. Zhdankin, P. J. Stang, Chem. Rev. 2008, 108, 5299 ) and uncatalyzed pathways ( J. E. Leffler, L. J. Story, J. Am. Chem. Soc. 1967, 89, 2333 – 2338 ). The by‐products detected included C 6 H 4 I(OAc), C 6 H 4 (OAc) 2, and biphenyl in accordance with Ref. [7c]. Both factors presumably contribute to the moderate yields of acetoxylated products (ca. 70 %) upon complete conversion of the oxidant.en_US
dc.identifier.citedreferenceThe observed exquisite sensitivity of the catalyst activity on the ligand to metal ratio is likely the reason that ancillary ligands were previously reported to inhibit CH acetoxylation (see Ref. [3b,d]).en_US
dc.identifier.citedreferenceThe longevity of the catalyst system Pd(OAc) 2 /pyr 1:0.9 was also evaluated by addition of a second batch of oxidant after 3 h. This “second run” afforded a 54 % yield of PhOAc (see the Supporting Information).en_US
dc.identifier.citedreferenceThis may be due to the greater stability of MesI(OAc) 2 under the reaction conditions (as indicated by Ref. [13]) and/or to diminished formation of the by‐product ArI(OAc) (formed by CH acetoxylation of oxidant‐derived ArI).en_US
dc.identifier.citedreferencePreliminary studies do not show a conclusive trend in the site selectivity of CH acetoxylation as a function of the substitution pattern on the pyridine ligand. Data for the acetoxylation of 1,2‐dichlorobenzene using 2‐picoline, 2,6‐lutidine, and 2,6‐di‐ tert ‐butylpyridine as ligands is given in the Supporting Information. Additional studies of ligand effects on site selectivity are ongoing in our laboratory.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceL. V. Desai, K. J. Stowers, M. S. Sanford, J. Am. Chem. Soc. 2008, 130, 13285 – 13293;en_US
dc.identifier.citedreferenceH. A. Chiong, Q.‐N. Pham, O. Daugulis, J. Am. Chem. Soc. 2007, 129, 9879 – 9884.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceS. D. Kirik, R. F. Mulagaleev, A. I. Blokhin, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 2004, C60, m 449 –m 450;en_US
dc.identifier.citedreferenceR. N. Pandey, P. M. Henry, Can. J. Chem. 1973, 52, 1241 – 1247.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.