Show simple item record

Structural characterization of the mitomycin 7‐ O ‐methyltransferase

dc.contributor.authorSingh, Shanterien_US
dc.contributor.authorChang, Aramen_US
dc.contributor.authorGoff, Randal D.en_US
dc.contributor.authorBingman, Craig A.en_US
dc.contributor.authorGrüschow, Sabineen_US
dc.contributor.authorSherman, David H.en_US
dc.contributor.authorPhillips, George N.en_US
dc.contributor.authorThorson, Jon S.en_US
dc.date.accessioned2011-11-10T15:36:43Z
dc.date.available2012-09-04T15:27:45Zen_US
dc.date.issued2011-07en_US
dc.identifier.citationSingh, Shanteri; Chang, Aram; Goff, Randal D.; Bingman, Craig A.; Grüschow, Sabine ; Sherman, David H.; Phillips, George N.; Thorson, Jon S. (2011). "Structural characterization of the mitomycin 7â O â methyltransferase." Proteins: Structure, Function, and Bioinformatics 79(7): 2181-2188. <http://hdl.handle.net/2027.42/87038>en_US
dc.identifier.issn0887-3585en_US
dc.identifier.issn1097-0134en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87038
dc.description.abstractMitomycins are quinone‐containing antibiotics, widely used as antitumor drugs in chemotherapy. Mitomycin‐7‐ O ‐methyltransferase (MmcR), a key tailoring enzyme involved in the biosynthesis of mitomycin in Streptomyces lavendulae , catalyzes the 7‐ O ‐methylation of both C9β‐ and C9α‐configured 7‐hydroxymitomycins. We have determined the crystal structures of the MmcR– S ‐adenosylhomocysteine (SAH) binary complex and MmcR–SAH–mitomycin A (MMA) ternary complex at resolutions of 1.9and 2.3 Å, respectively. The study revealed MmcR to adopt a common S ‐adenosyl‐ L ‐methionine‐dependent O ‐methyltransferase fold and the presence of a structurally conserved active site general acid–base pair is consistent with a proton‐assisted methyltransfer common to most methyltransferases. Given the importance of C7 alkylation to modulate mitomycin redox potential, this study may also present a template toward the future engineering of catalysts to generate uniquely bioactive mitomycins. Proteins 2011. © 2011 Wiley‐Liss, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherMethyltransferaseen_US
dc.subject.otherNatural Producten_US
dc.subject.otherMitomycinen_US
dc.subject.otherBiosynthesisen_US
dc.subject.otherS ‐Adenosyl‐ L ‐Methionineen_US
dc.subject.otherCanceren_US
dc.subject.otherX‐Ray Crystallographyen_US
dc.titleStructural characterization of the mitomycin 7‐ O ‐methyltransferaseen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumLife Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109‐2216en_US
dc.contributor.affiliationumDepartment of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109‐2216en_US
dc.contributor.affiliationotherDivision of Pharmaceutical Sciences, Wisconsin Center for Natural Product Research, School of Pharmacy, University of Wisconsin‐Madison, Madison, Wisconsin 53705en_US
dc.contributor.affiliationotherDepartment of Biochemistry, University of Wisconsin‐Madison, Madison, Wisconsin 53706en_US
dc.contributor.affiliationotherDepartment of Biochemistry, University of Wisconsin‐Madison, Madison, WI 53706en_US
dc.contributor.affiliationotherDivision of Pharmaceutical Sciences, Wisconsin Center for Natural Product Research, School of Pharmacy, University of Wisconsin‐Madison, Madison, WI 53705en_US
dc.identifier.pmid21538548en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87038/1/PROT_23040_sm_suppinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87038/2/23040_ftp.pdf
dc.identifier.doi10.1002/prot.23040en_US
dc.identifier.sourceProteins: Structure, Function, and Bioinformaticsen_US
dc.identifier.citedreferenceHata T, Sugawara R. Mitomycin, a new antibiotic from Streptomyces. II. Description of the strain. J Antibiot 1956; 9: 147 – 151.en_US
dc.identifier.citedreferenceHata T, Hoshi T, Kanamori K, Matsumae A, Sano Y, Shima T, Sugawara R. Mitomycin, a new antibiotic from Streptomyces. I. JAntibiot Ser A 1956; 9: 141 – 146.en_US
dc.identifier.citedreferenceWakaki S, Marumo H, Tomioka K, Shimizu G, Kato E, Kamada H, Kudo S, Fujimoto Y. Isolation of new fractions of antitumor mitomycins. Antibiot Chemother 1958; 8: 228 – 240.en_US
dc.identifier.citedreferenceBegleiter A. Clinical applications of quinone‐containing alkylating agents. Front Biosci 2000; 5: E153 – E171.en_US
dc.identifier.citedreferenceGalm U, Hager MH, van Lanen SG, Ju J, Thorson JS, Shen B. Antitumor antibiotics: bleomycin, enediynes, and mitomycin. Chem Rev 2005; 105: 739 – 758.en_US
dc.identifier.citedreferenceMcKeown SR, Coweny RL, Williams KJ. Bioreductive drugs: from concept to clinic. Clin Oncol (R Coll Radiol) 2007; 19: 427 – 442.en_US
dc.identifier.citedreferenceRockwell S, Dobrucki IT, Kim EY, Marrison ST, Vu VT. Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr Mol Med 2009; 9: 442 – 458.en_US
dc.identifier.citedreferenceBezanson GS, Vining LC. Studies on the biosynthesis of mitomycin C by Streptomyces verticillatus. Can J Biochem 1971; 49: 911 – 918.en_US
dc.identifier.citedreferenceAnderson MG, Kibby JJ, Rickards RW, Rothschild JM. Biosynthesis of the mitomycin antibiotics from 3‐amino‐5‐hydroxybenzoic acid. J Chem Soc Chem Commun 1980; 1980: 1277 – 1278.en_US
dc.identifier.citedreferenceHornemann U, Eggert JH. Utilization of the intact carbamoyl group of L ‐(NH 2 CO– 13 C, 15 N) citrulline in mitomycin biosynthesis by Streptomyces verticillatus. J Antibiot (Tokyo) 1975; 10: 841 – 843.en_US
dc.identifier.citedreferenceHornemann Y, Kehrer JP, Nunez CS, Ranieri RL. D ‐glucosamine and L ‐citrulline, precursors in mitomycin biosynthesis by Streptomyces verticillatus. J Am Chem Soc 1974; 96: 320 – 322.en_US
dc.identifier.citedreferenceMao Y, Varoglu M, Sherman DH. Molecular characterization and analysis of the biosynthetic gene cluster for the antitumor antibiotic mitomycin C from Streptomyces lavendulae NRRL 2564. Chem Biol 1999; 6: 251 – 263.en_US
dc.identifier.citedreferenceSitachitta N, Lopanik NB, Mao Y, Sherman DH. Analysis of a parallel branch in the mitomycin biosynthetic pathway involving the mitN‐encoded aziridine N ‐methyltransferase. J Biol Chem 2007; 282: 20941 – 20947.en_US
dc.identifier.citedreferenceGruschow S, Chang LC, Mao Y, Sherman DH. Hydroxyquinone O ‐methylation in mitomycin biosynthesis. J Am Chem Soc 2007; 129: 6470 – 6476.en_US
dc.identifier.citedreferenceZhang C, Weller RL, Thorson JS, Rajski SR. Natural product diversification using a non‐natural cofactor analogue of S ‐adenosyl‐ L ‐methionine. J Am Chem Soc 2006; 128: 2760 – 2761.en_US
dc.identifier.citedreferenceZhang C, Albermann C, Fu X, Peters NR, Chisholm JD, Zhang G, Gilbert EJ, Wang PG, Van Vranken DL, Thorson JS. RebG‐ and RebM‐catalyzed indolocarbazole diversification. Chembiochem 2006; 7: 795 – 804.en_US
dc.identifier.citedreferenceSingh S, McCoy JG, Zhang C, Bingman CA, Phillips GN, Jr, Thorson JS. Structure and mechanism of the rebeccamycin sugar 4′‐ O ‐methyltransferase RebM. J Biol Chem 2008; 283: 22628 – 22636.en_US
dc.identifier.citedreferenceLukinavicius G. Lapiene V, Stasevskij Z, Dalhoff C, Weinhold E, Klimasauskas S. Targeted labeling of DNA by methyltransferase‐directed transfer of activated groups (mTAG). J Am Chem Soc 2007; 129: 2758 – 2759.en_US
dc.identifier.citedreferenceKlimasauskas S, Weinhold E. A new tool for biotechnology: AdoMet‐dependent methyltransferases. Trends Biotechnol 2007; 25: 99 – 104.en_US
dc.identifier.citedreferencePeters W, Willnow S, Duisken M, Kleine H, Macherey T, Duncan KE, Litchfield DW, Lüscher B, Weinhold E. Enzymatic site‐specific functionalization of protein methyltransferase substrates with alkynes for click labeling. Angew Chem Int Ed Engl 2010; 49: 5170 – 5173.en_US
dc.identifier.citedreferenceDalhoff C, Lukinavicius G, Klimasauskas S, Weinhold E. Synthesis of S ‐adenosyl‐ L ‐methionine analogs and their use for sequence‐specific transalkylation of DNA by methyltransferases. Nat Protoc 2006; 1: 1879 – 1886.en_US
dc.identifier.citedreferenceDalhoff C, Lukinavicius G, Klimasauskas S, Weinhold E. Direct transfer of extended groups from synthetic cofactors by DNA methyltransferases. Nat Chem Biol 2006; 2: 31 – 32.en_US
dc.identifier.citedreferenceSreenath HK, Bingman CA, Buchan BW, Seder KD, Burns BT, Geetha HV, Jeon WB, Vojtik FC, Aceti DJ, Frederick RO, Phillips GN, Jr, Fox BG. Protocols for production of selenomethionine‐labeled proteins in 2‐L polyethylene terephthalate bottles using auto‐induction medium. Protein Expr Purif 2005; 40: 256 – 267.en_US
dc.identifier.citedreferenceOtwinowski Z, Minor W. Processing of X‐ray diffraction data collected in oscillation mode. Methods Enzymol 1997; 276: 307 – 326.en_US
dc.identifier.citedreferenceGrosse‐Kunstleve RW, Adams PD. Substructure search procedures for macromolecular structures. Acta Crystallogr Sect D 2003; 59: 1966 – 1973.en_US
dc.identifier.citedreferenceSchneider TR, Sheldrick GM. Substructure solution with SHELXD. Acta Crystallogr Sect D 2002; 58: 1772 – 1779.en_US
dc.identifier.citedreferenceDall'Antonia F, Baker PJ, Schneider TR. Optimization of selenium substructures as obtained from SHELXD. Acta Crystallogr Sect D 2003; 59: 1987 – 1994.en_US
dc.identifier.citedreferencede la Fortelle E, Bricogne G. Maximum‐likelihood heavy‐atom parameter refinement for multiple insomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol 1997; 276: 472 – 494.en_US
dc.identifier.citedreferencePerrakis A, Morris R, Lamzin VS. Automated protein model building combined with iterative structure refinement. Nat Struct Biol 1999; 6: 458 – 463.en_US
dc.identifier.citedreferenceVagin A, Teplyakov A. MOLREP: an automated program for molecular replacement. J Appl Crystallogr 1997; 30: 1022 – 1025.en_US
dc.identifier.citedreferenceEmsley P, Cowtan K. Coot: model‐building tools for molecular graphics. Acta Crystallogr Sect D 2004; 60: 2126 – 2132.en_US
dc.identifier.citedreferenceMurshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum‐likelihood method. Acta Crystallogr Sect D 1997; 53: 240 – 255.en_US
dc.identifier.citedreferenceAdams PD, Grosse‐Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ, Moriarty NW, Read RJ, Sacchettini JC, Sauter NK, Terwilliger TC. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr Sect D 2002; 58: 1948 – 1954.en_US
dc.identifier.citedreferenceDavis IW, Leaver‐Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB, III, Snoeyink J, Richardson JS, Richardson DC. MolProbity: all‐atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 2007; 35: W375 – W383.en_US
dc.identifier.citedreferenceLaskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM. AQUA and PROCHECK‐NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 1996; 8: 477 – 486.en_US
dc.identifier.citedreferencePotterton E, Briggs P, Turkenburg M, Dodson EA. Graphical user interface to the CCP4 program suite. Acta Crystallogr D Biol Crystallogr 2003; 59: 1131 – 1137.en_US
dc.identifier.citedreferenceJansson A, Koskiniemi H, Mantsala P, Niemi J, Schneider G. Crystal structure of a ternary complex of DnrK, a methyltransferase in daunorubicin biosynthesis, with bound products. J Biol Chem 2004; 279: 41149 – 41156.en_US
dc.identifier.citedreferenceCooke HA, Guenther EL, Luo Y, Shen B, Bruner SD. Molecular basis of substrate promiscuity for the SAM‐dependent O ‐methyltransferase NcsB1, involved in the biosynthesis of the enediyne antitumor antibiotic neocarzinostatin. Biochemistry 2009; 48: 9590 – 9598.en_US
dc.identifier.citedreferenceZubieta C, He XZ, Dixon RA, Noel JP. Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant O ‐methyltransferases. Nat Struct Mol Biol 2001; 8: 271 – 279.en_US
dc.identifier.citedreferenceChang A, Singh S, Bingman CA, Thorson JS, Phillips GN, Jr. Structural characterization of CalO1: A putative orsellinic acid methyltransferase in the calicheamicin biosynthetic pathway. Acta Cryst D 2011; D67: 197 – 203.en_US
dc.identifier.citedreferencePalma PN, Rodrigues ML, Archer M, Bonifácio MJ, Loureiro AI, Learmonth DA, Carrondo MA, Soares‐da‐Silva P. Comparative study of ortho‐ and meta‐nitrated inhibitors of catechol‐ O ‐methyltransferase: interactions with the active site and regioselectivity of O ‐methylation. Mol Pharmacol 2006; 70: 143 – 153.en_US
dc.identifier.citedreferenceJansson A, Niemi J, Lindqvist Y, Mantsala P, Schneider G. Crystal structure of aclacinomycin‐10‐hydroxylase, a S ‐adenosyl‐ L ‐methionine‐dependent methyltransferase homolog involved in anthracycline biosynthesis in Streptomyces purpurascens. J Mol Biol 2003; 334: 269 – 280.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.