Show simple item record

Transforming growth factor β controls CCN3 expression in nucleus pulposus cells of the intervertebral disc

dc.contributor.authorTran, Cassie M.en_US
dc.contributor.authorSmith, Harvey E.en_US
dc.contributor.authorSymes, Avivaen_US
dc.contributor.authorRittié, Laureen_US
dc.contributor.authorPerbal, Bernarden_US
dc.contributor.authorShapiro, Irving M.en_US
dc.contributor.authorRisbud, Makarand V.en_US
dc.date.accessioned2011-11-10T15:36:46Z
dc.date.available2012-12-03T21:17:30Zen_US
dc.date.issued2011-10en_US
dc.identifier.citationTran, Cassie M.; Smith, Harvey E.; Symes, Aviva; Rittié, Laure ; Perbal, Bernard; Shapiro, Irving M.; Risbud, Makarand V. (2011). "Transforming growth factor β controls CCN3 expression in nucleus pulposus cells of the intervertebral disc." Arthritis & Rheumatism 63(10): 3022-3031. <http://hdl.handle.net/2027.42/87040>en_US
dc.identifier.issn0004-3591en_US
dc.identifier.issn1529-0131en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87040
dc.description.abstractObjective To investigate transforming growth factor β (TGFβ) regulation of CCN3 expression in cells of the nucleus pulposus. Methods Real‐time reverse transcription–polymerase chain reaction and Western blot analyses were used to measure CCN3 expression in the nucleus pulposus. Transfections were used to measure the effect of Smad3, MAPKs, and activator protein 1 (AP‐1) on TGFβ‐mediated CCN3 promoter activity. Lentiviral knockdown of Smad3 was performed to assess the role of Smad3 in CCN3 expression. Results CCN3 was expressed in embryonic and adult intervertebral discs. TGFβ decreased the expression of CCN3 and suppressed its promoter activity in nucleus pulposus cells. DN‐Smad3, Smad3 small interfering RNA, or DN‐AP‐1 had little effect on TGFβ suppression of CCN3 promoter activity. However, p38 and ERK inhibitors blocked suppression of CCN3 by TGFβ, suggesting involvement of these signaling pathways in the regulation of CCN3. Interestingly, overexpression of Smad3 in the absence of TGFβ increased CCN3 promoter activity. We validated the role of Smad3 in controlling CCN3 expression in Smad3‐null mice and in nucleus pulposus cells transduced with lentiviral short hairpin Smad3. In terms of function, treatment with recombinant CCN3 showed a dose‐dependent decrease in the proliferation of nucleus pulposus cells. Moreover, CCN3‐treated cells showed a decrease in aggrecan, versican, CCN2, and type I collagen expression. Conclusion The opposing effect of TGFβ on CCN2 and CCN3 expression and the suppression of CCN2 by CCN3 in nucleus pulposus cells further the paradigm that these CCN proteins form an interacting triad, which is possibly important in maintaining extracellular matrix homeostasis and cell numbers.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.titleTransforming growth factor β controls CCN3 expression in nucleus pulposus cells of the intervertebral discen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeriatricsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, Ann Arboren_US
dc.contributor.affiliationotherThomas Jefferson University, Philadelphia, Pennsylvaniaen_US
dc.contributor.affiliationotherUniformed Services University of the Health Sciences, Bethesda, Marylanden_US
dc.contributor.affiliationotherUniversité Paris Diderot, Paris 7, Paris, Franceen_US
dc.contributor.affiliationotherNew England Baptist Hospital and Tufts University School of Medicine, Boston, Massachusettsen_US
dc.contributor.affiliationotherL'Oréal Research and Development, Clichy, Franceen_US
dc.contributor.affiliationotherDepartment of Orthopaedic Surgery, Thomas Jefferson University, 1015 Walnut Street, Suite 501 Curtis Building, Philadelphia, PA 19107en_US
dc.identifier.pmid21618206en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87040/1/30468_ftp.pdf
dc.identifier.doi10.1002/art.30468en_US
dc.identifier.sourceArthritis & Rheumatismen_US
dc.identifier.citedreferenceRoberts S, Evans H, Trivedi J, Menage J. Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am 2006; 88 Suppl 2: 10 – 4.en_US
dc.identifier.citedreferenceFeng H, Danfelter M, Stromqvist B, Heinegard D. Extracellular matrix in disc degeneration. J Bone Joint Surg Am 2006; 88 Suppl 2: 25 – 9.en_US
dc.identifier.citedreferenceSetton LA, Chen J. Mechanobiology of the intervertebral disc and relevance to disc degeneration. J Bone Joint Surg Am 2006; 88 Suppl 2: 52 – 7.en_US
dc.identifier.citedreferenceNg L, Grodzinsky AJ, Patwari P, Sandy J, Plaas A, Ortiz C. Individual cartilage aggrecan macromolecules and their constituent glycosaminoglycans visualized via atomic force microscopy. J Struct Biol 2003; 143: 242 – 57.en_US
dc.identifier.citedreferenceUrban JP, Roberts S. Degeneration of the intervertebral disc. Arthritis Res Ther 2003; 5: 120 – 30.en_US
dc.identifier.citedreferenceLee YJ, Kong MH, Song KY, Lee KH, Heo SH. The relation between Sox9, TGF‐β1, and proteoglycan in human intervertebral disc cells. J Korean Neurosurg Soc 2008; 43: 149 – 54.en_US
dc.identifier.citedreferenceChen CC, Lau LF. Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol 2009; 41: 771 – 83.en_US
dc.identifier.citedreferenceHolbourn KP, Acharya KR, Perbal B. The CCN family of proteins: structure–function relationships. Trends Biochem Sci 2008; 33: 461 – 73.en_US
dc.identifier.citedreferenceHolbourn KP, Perbal B, Ravi Acharya K. Proteins on the catwalk: modelling the structural domains of the CCN family of proteins. J Cell Commun Signal 2009; 3: 25 – 41.en_US
dc.identifier.citedreferenceKubota S, Takigawa M. CCN family proteins and angiogenesis: from embryo to adulthood. Angiogenesis 2007; 10: 1 – 11.en_US
dc.identifier.citedreferenceCicha I, Goppelt‐Struebe M. Connective tissue growth factor: context‐dependent functions and mechanisms of regulation. Biofactors 2009; 35: 200 – 8.en_US
dc.identifier.citedreferencePerbal B. CCN3: Doctor Jekyll and Mister Hyde. J Cell Commun Signal 2008; 2: 3 – 7.en_US
dc.identifier.citedreferenceJoliot V, Martinerie C, Dambrine G, Plassiart G, Brisac M, Crochet J, et al. Proviral rearrangements and overexpression of a new cellular gene (nov) in myeloblastosis‐associated virus type 1‐induced nephroblastomas. Mol Cell Biol 1992; 12: 10 – 21.en_US
dc.identifier.citedreferenceShimoyama T, Hiraoka S, Takemoto M, Koshizaka M, Tokuyama H, Tokuyama T, et al. CCN3 inhibits neointimal hyperplasia through modulation of smooth muscle cell growth and migration. Arterioscler Thromb Vasc Biol 2010; 30: 675 – 82.en_US
dc.identifier.citedreferenceFu CT, Bechberger JF, Ozog MA, Perbal B, Naus CC. CCN3 (NOV) interacts with connexin 43 in C6 glioma cells: possible mechanism of connexin‐mediated growth suppression. J Biol Chem 2004; 279: 36943 – 50.en_US
dc.identifier.citedreferenceKatsube K, Ichikawa S, Katsuki Y, Kihara T, Terai M, Lau LF, et al. CCN3 and bone marrow cells. J Cell Commun Signal 2009; 3: 135 – 45.en_US
dc.identifier.citedreferenceSakamoto K, Yamaguchi S, Ando R, Miyawaki A, Kabasawa Y, Takagi M, et al. The nephroblastoma overexpressed gene (NOV/ccn3) protein associates with Notch1 extracellular domain and inhibits myoblast differentiation via Notch signaling pathway. J Biol Chem 2002; 277: 29399 – 405.en_US
dc.identifier.citedreferenceHeath E, Tahri D, Andermarcher E, Schofield P, Fleming S, Boulter CA. Abnormal skeletal and cardiac development, cardiomyopathy, muscle atrophy and cataracts in mice with a targeted disruption of the Nov (Ccn3) gene. BMC Dev Biol 2008; 8: 18.en_US
dc.identifier.citedreferenceLafont J, Jacques C, Le Dreau G, Calhabeu F, Thibout H, Dubois C, et al. New target genes for NOV/CCN3 in chondrocytes: TGF‐β2 and type X collagen. J Bone Miner Res 2005; 20: 2213 – 23.en_US
dc.identifier.citedreferenceRisbud MV, Guttapalli A, Stokes DG, Hawkins D, Danielson KG, Schaer TP, et al. Nucleus pulposus cells express HIF‐1α under normoxic culture conditions: a metabolic adaptation to the intervertebral disc microenvironment. J Cell Biochem 2006; 98: 152 – 9.en_US
dc.identifier.citedreferenceKyurkchiev S, Yeger H, Bleau AM, Perbal B. Potential cellular conformations of the CCN3(NOV) protein. Cell Commun Signal 2004; 2: 9.en_US
dc.identifier.citedreferenceTran CM, Markova D, Smith HE, Susarla B, Ponnappan RK, Anderson DG, et al. Regulation of CCN2/connective tissue growth factor expression in the nucleus pulposus of the intervertebral disc: role of Smad and activator protein 1 signaling. Arthritis Rheum 2010; 62: 1983 – 92.en_US
dc.identifier.citedreferenceRiser BL, Najmabadi F, Perbal B, Peterson DR, Rambow JA, Riser ML, et al. CCN3 (NOV) is a negative regulator of CCN2 (CTGF) and a novel endogenous inhibitor of the fibrotic pathway in an in vitro model of renal disease. Am J Pathol 2009; 174: 1725 – 34.en_US
dc.identifier.citedreferenceKawaki H, Kubota S, Suzuki A, Lazar N, Yamada T, Matsumura T, et al. Cooperative regulation of chondrocyte differentiation by CCN2 and CCN3 shown by a comprehensive analysis of the CCN family proteins in cartilage. J Bone Miner Res 2008; 23: 1751 – 64.en_US
dc.identifier.citedreferenceLazar N, Manara C, Navarro S, Bleau AM, Llombart‐Bosch A, Scotlandi K, et al. Domain‐specific CCN3 antibodies as unique tools for structural and functional studies. J Cell Commun Signal 2007; 1: 91 – 102.en_US
dc.identifier.citedreferenceLafont J, Laurent M, Thibout H, Lallemand F, Le Bouc Y, Atfi A, et al. The expression of novH in adrenocortical cells is down‐regulated by TGFβ1 through c‐Jun in a Smad‐independent manner. J Biol Chem 2002; 277: 41220 – 9.en_US
dc.identifier.citedreferenceBleau AM, Planque N, Lazar N, Zambelli D, Ori A, Quan T, et al. Antiproliferative activity of CCN3: involvement of the C‐terminal module and post‐translational regulation. J Cell Biochem 2007; 101: 1475 – 91.en_US
dc.identifier.citedreferenceZhang R, Ruan D, Zhang C. Effects of TGF‐β1 and IGF‐1 on proliferation of human nucleus pulposus cells in medium with difference serum concentrations. J Orthop Surg Res 2006; 26: 1: 9.en_US
dc.identifier.citedreferenceNakai T, Mochida J, Sakai D. Synergistic role of c‐Myc and ERK1/2 in the mitogenic response to TGFβ‐1 in cultured rat nucleus pulposus cells. Arthritis Res Ther 2008; 10: R140.en_US
dc.identifier.citedreferenceAoyama E, Hattori T, Hoshijima M, Araki D, Nishida T, Kubota S, et al. N‐terminal domains of CCN family 2/connective tissue growth factor bind to aggrecan. Biochem J 2009; 420: 413 – 20.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.